Skip to main content
Log in

Effect of Magnetic Fields on the Microwave Impedance of FeCoB + SiO2 Composite Films

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Microwave magnetic impedance spectra are obtained for \([{{({\text{C}}{{{\text{o}}}_{{0.52}}}{\text{F}}{{{\text{e}}}_{{0.45}}}{{{\text{B}}}_{{0.2}}})}_{x}} + {{({\text{Si}}{{{\text{O}}}_{2}})}_{y}}]\) (x = 0.46–0.88) films in a DC magnetic field of 0‒0.7 T. The modulus of microwave impedance in films with x = 0.76 is found to fall by as much as 6% upon magnetization. The maximum negative microwave magnetic impedance of the films is established along with its shift from 2.2 to 0.4 GHz as x rises. A striped magnetic structure with oppositely directed magnetizations of neighboring stripes is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bukharaev, A.A., Zvezdin, A.P., Pyatakov, A.P., et al., Phys.—Usp., 2018, vol. 61, no. 12, p. 1175.

    Article  ADS  Google Scholar 

  2. Baranov, P.G., Kalashnikova, A.M., Kozub, V.I., et al., Phys.—Usp., 2019, vol. 62, no. 8, p. 795.

    Article  ADS  Google Scholar 

  3. Rylkov, V.V., Emelyanov, A.V., Nikolaev, S.N., et al., J. Exp. Theor. Phys., 2020, vol. 131, no. 1, p. 160.

    Article  ADS  Google Scholar 

  4. Rylkov, V.V., Emelyanov, A.V., Nikolaev, S.N., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 85, no. 9, p. 1065.

    Google Scholar 

  5. Kotov, L.N., Vlasov, V.S., Turkov, V.K., et al., J. Nanosci. Nanotechnol., 2012, vol. 12, no. 2, p. 1696.

    Article  Google Scholar 

  6. Kotov, L., Ustyugov, V., Vlasov, V., et al., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 123, 012009.

  7. Kotov, L.N., Turkov, V.K., Vlasov, V.S., et al., Mater. Sci. Eng., 2006, vol. 442, no. 1, p. 352.

    Article  Google Scholar 

  8. Vlasov, V.S., Kotov, L.N., Shavrov, V.G., et al., J. Commun. Technol. Electron., 2014, vol. 59, no. 9, p. 920.

    Article  Google Scholar 

  9. Turkov, V.K., Vlasov, V.S., Kotov, L.N., et al., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 10, p. 1223.

    Article  Google Scholar 

  10. Antonets, I.V., Golubev, E.A., Kotov, L.N., et al., Tech. Phys., 2016, vol. 61, no. 3, p. 416.

    Article  Google Scholar 

  11. Antonets, I.V., Kotov, L.N., Golubev, E.A., et al., Tech. Phys., 2017, vol. 62, no. 2, p. 261.

    Article  Google Scholar 

  12. Lukashevich, M.G., Vvedenie v magnitoelektroniku (Introduction to Magnetoelectronics), Minsk: Beloruss. Gos. Univ., 2003.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-72-20048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Kotov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, L.N., Lasek, M.P., Vlasov, V.S. et al. Effect of Magnetic Fields on the Microwave Impedance of FeCoB + SiO2 Composite Films. Bull. Russ. Acad. Sci. Phys. 86, 588–591 (2022). https://doi.org/10.3103/S1062873822050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822050136

Navigation