Skip to main content
Log in

Modeling the Thermally Stimulated Evolution of Hydrogen from Ti, Zr, Pd, and Ni

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

An experimental study is performed of the thermally stimulated evolution of hydrogen in the linear mode of heating (1°C/s). Hydrogen is released from plane-parallel plates of Ti, Zr, Ni, and Pd metals of different thicknesses (0.05–1 mm), preliminarily saturated with hydrogen via electrolysis. Analytical and numerical models of non-stationary processes of the diffusion release of hydrogen from samples are considered with allowance for diffusion and desorption. Programs for numerically modeling processes of thermal gas release are proposed, developed, and perfected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bellosta von Colbe, J., Ares, J.-R., Barale, J., et al., Int. J. Hydrogen Energy, 2019, vol. 44, no. 15, p. 7780.

    Article  Google Scholar 

  2. Hirscher, M., Handbook of Hydrogen Storage: New Materials for Future Energy Storage, New York: Wiley, 2010.

    Book  Google Scholar 

  3. Schlapbach, L. and Zuttel, A., Nature, 2001, vol. 414, no. 6861, p. 353.

    Article  ADS  Google Scholar 

  4. Varin, R.A., Czujko, T., and Wronski, Z.S., Nanomaterials for Solid State Hydrogen Storage, Boston: Springer, 2009.

    Book  Google Scholar 

  5. Yamamoto, S., Mater. Trans., 2004, vol. 45, no. 8, p. 2647.

    Article  Google Scholar 

  6. Kimura, A., Mater. Trans., 2005, vol. 46, no. 3, p. 394.

    Article  Google Scholar 

  7. Pundt, A. and Kirchheim, R., Annu. Rev. Mater. Res., 2006, vol. 36, no. 1, p. 555.

    Article  ADS  Google Scholar 

  8. Čížek, J., Melikhova, O., Vlček, M., et al., Int. J. Hydrogen Energy, 2013, vol. 38, no. 27, 12115.

    Article  Google Scholar 

  9. Eliezer, D., Eliaz, N., Senkov, O.N., and Froes, F.H., Mater. Sci. Eng., A, 2000, vol. 280, no. 1, p. 220.

    Article  Google Scholar 

  10. Hong, E., Dunand, D.C., and Choe, H., Int. J. Hydrogen Energy, 2010, vol. 35, no. 11, p. 5708.

    Article  Google Scholar 

  11. Levdanskii, V.V., Smolik, J., and Moravec, P., J. Eng. Phys. Thermophys., 2007, vol. 80, no. 2, p. 329.

    Article  Google Scholar 

  12. Lototskyy, M.V., Yartys, V.A., Pollet, B.G., and Bowman, R.C., Int. J. Hydrogen Energy, 2014, vol. 39, no. 11, p. 5818.

    Article  Google Scholar 

  13. Djukic, M.B., Bakic, GM., Zeravcic, V.S., et al., Corrosion, 2016, vol. 72, no. 7, p. 943.

    Article  Google Scholar 

  14. Esaklul, K.A., in Trends in Oil and Gas Corrosion Research and Technologies, Amsterdam: Elsevier, 2017, p. 315.

    Google Scholar 

  15. Popov, B.N., Lee, J.W., and Djukic, M.B., in Handbook of Environmental Degradation of Materials, Amsterdam: Elsevier, 2018, p. 133.

    Google Scholar 

  16. Tyurin, Y. and Chernov, I., Int. J. Hydrogen Energy, 2002, vol. 27, nos. 7–8, p. 829.

    Article  Google Scholar 

  17. Tyurin, Y.I., Sypchenko, V.S., Nikitenkov, N.N., et al., Int. J. Hydrogen Energy, 2019, vol. 44, no. 36, 20233.

    Article  Google Scholar 

  18. Rokhmanenkov, A.S., Kuksin, A.Y., and Yanilkin, A.V., Phys. Met. Metallogr., 2017, vol. 118, no. 1, p. 28.

    Article  ADS  Google Scholar 

  19. Tyurin, Y.I., Nikitenkov, N.N., Sigfusson, I.T., et al., Vacuum, 2016, vol. 131, p. 73.

    Article  ADS  Google Scholar 

  20. Kristinsdóttir, L. and Skúlason, E., Surf. Sci., 2012, vol. 606, nos. 17–18, p. 1400.

    Article  ADS  Google Scholar 

  21. Tyurin, Y.I., Nikitenkov, N.N., Sypchenko, V.S., et al., Int. J. Hydrogen Energy, 2021, vol. 46, no. 37, 19523.

    Article  Google Scholar 

  22. Rokhmanenkov, A.S., Int. J. Hydrogen Energy, 2017, vol. 42, no. 35, 22610.

    Article  Google Scholar 

  23. Juillet, C., Tupin, M., Martin, F., et al., Int. J. Hydrogen Energy, 2019, vol. 44, no. 39, 21264.

    Article  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Tyurin.

Additional information

Translated by A. Tulyabaev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongru Zhang, Nikitenkov, N.N., Sypchenko, V.S. et al. Modeling the Thermally Stimulated Evolution of Hydrogen from Ti, Zr, Pd, and Ni. Bull. Russ. Acad. Sci. Phys. 86, 536–541 (2022). https://doi.org/10.3103/S1062873822050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822050112

Navigation