Skip to main content

An Aspect of Reflection of Frequency-Selective Surfaces with Metal Screen in Millimeter Wave Range

Abstract

Modeling and experimental data are presented on the spectral behavior of frequency selective surfaces on dielectric substrates with metallic screens. Factors are established that allow similar absorption characteristics to be obtained for reflective screens with different perforations. The obtained data can serve as guides for designing frequency selective screens. Understanding the physics of their operation is a key to improving surfaces with desired frequency responses and creating ones that are more complex.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kelly, J.R., Kokkinos, T., and Feresidis, A.P., IEEE Trans. Antennas Propag., 2008, vol. 56, no. 9, p. 2817.

    ADS  Article  Google Scholar 

  2. Dewan, R., Rahim, M.K.A., Hamid, M.R., et al., Int. J. RF Microwave Comput.-Aided Eng., 2017, vol. 27, no. 6, e21105.

    Article  Google Scholar 

  3. Foroozesh, A. and Shafai, L., IEEE Antennas Wireless Propag. Lett., 2008, vol. 8, p. 10.

    ADS  Article  Google Scholar 

  4. Feresidis, A.P., Goussetis, G., Wang, S., and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., 2005, vol. 53, no. 1, p. 209.

    ADS  Article  Google Scholar 

  5. Panda, P.K. and Ghosh, D., Proc. Int. Conf. on Intelligent Computing and Advances in Communication, Singapore, 2020, p. 272.

  6. Yao, L., Li, E., Yan, J., et al., Electronics, 2021, vol. 10, no. 9, 994.

    Article  Google Scholar 

  7. Joshi, C., Lepage, A.C., Sarrazin, J., and Begaud, X., IEEE Trans. Antennas Propag., 2016, vol. 64, no. 7, p. 3269.

    ADS  Article  Google Scholar 

  8. Mehrabani, A.M. and Shafai, L., Proc. IEEE Antennas and Propagation Society Int. Symp., 2010, p. 1.

  9. Wu, J., Yang, S., Chen, Y., et al., IEEE Trans. Antennas Propag., 2016, vol. 65, no. 1, p. 368.

    ADS  Article  Google Scholar 

  10. Wu, T.K., Frequency-Selective Surface and Grid Array, New York: Wiley, 1995.

    Google Scholar 

  11. Al-Joumayly, M. and Behdad, N., IEEE Trans. Antennas Propag., 2009, vol. 57, no. 2, p. 452.

    ADS  Article  Google Scholar 

  12. Al-Joumayly, M. and Behdad, N., IEEE Trans. Antennas Propag., 2010, vol. 58, no. 12, p. 4033.

    ADS  Article  Google Scholar 

  13. Hibbins, A.P., Sambles, J.R., Lawrence, C.R., and Brown, J.R., Phys. Rev. Lett., 2004, vol. 92, no. 14, 143904.

    ADS  Article  Google Scholar 

  14. Luukkonen, O., Costa, F., Simovski, C.R., et al., IEEE Trans. Antennas Propag., 2009, vol. 57, no. 10, p. 3119.

    ADS  Article  Google Scholar 

  15. Luukkonen, O., Simovski, C., Granet, G., et al., IEEE Trans. Antennas Propag., 2008, vol. 56, no. 6, p. 1624.

    ADS  Article  Google Scholar 

  16. Huang, R., Kong, L.B., and Matitsine, S., J. Appl. Phys., 2009, vol. 106, no. 7, 074908.

    ADS  Article  Google Scholar 

  17. Brown, J.R., Hibbins, A.P., Lockyear, M.J., et al., J. Appl. Phys., 2008, vol. 104, no. 4, 043105.

    ADS  Article  Google Scholar 

  18. Goussetis, G., Feresidis, A.P., and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., 2006, vol. 54, no. 1, p. 82.

    ADS  Article  Google Scholar 

  19. Todorov, Y., Tosetto, L., Teissier, J., et al., Opt. Express, 2010, vol. 18, no. 13, 13886.

    ADS  Article  Google Scholar 

  20. Long, J. and Sievenpiper, D.F., IEEE Trans. Antennas Propag., 2016, vol. 64, no. 7, p. 3003.

    ADS  Article  Google Scholar 

  21. Fu, J., Dong, H., He, J., et al., Adv. Opt. Mater., 2020, vol. 8, no. 16, 2000259.

    Article  Google Scholar 

  22. Zhang, H.B., Zhou, P.H., Lu, H.P., et al., IEEE Trans. Antennas Propag., 2012, vol. 61, no. 2, p. 976.

    ADS  Article  Google Scholar 

  23. Brown, J.R., Hibbins, A.P., Lawrence, C.R., et al., J. Appl. Phys., 2012, vol. 112, no. 1, 014904.

    ADS  Article  Google Scholar 

  24. Ramos, W.T.S., Mesquita, R.C., and Silva, E.J., Mater. Res. Exp., 2017, vol. 4, no. 7, 075801.

    Article  Google Scholar 

  25. Lockyear, M.J., Hibbins, A.P., Sambles, J.R., et al., Appl. Phys. Lett., 2009, vol. 94, no. 4, 041913.

    ADS  Article  Google Scholar 

  26. Biginton, M.P., Hibbins, A.P., Sambles, J.R., and Youngs, I.J., Opt. Express, 2010, vol. 18, no. 23, 23916.

    ADS  Article  Google Scholar 

  27. Komarov, V.V., Zwick, T., Marahrens, S., and Molchanov, S.Yu., IEEE Microwave Wireless Compon. Lett., 2019, vol. 29, no. 12, p. 775.

    Article  Google Scholar 

  28. Tadesse, A.D., Acharya, O.P., and Sahu, S., Int. J. RF Microwave Comput.-Aided Eng., 2020, vol. 30, no. 5, e22154.

    Article  Google Scholar 

  29. Krenitskii, A.P., Meshchanov, V.P., Molchanov, S.Yu., and Ushakov, N.M., Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2016, no. 6, p. 49.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-72-30003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Molchanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molchanov, S.Y., Bahteev, I.S., Muravev, V.M. et al. An Aspect of Reflection of Frequency-Selective Surfaces with Metal Screen in Millimeter Wave Range. Bull. Russ. Acad. Sci. Phys. 86, 408–412 (2022). https://doi.org/10.3103/S1062873822040165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822040165