Skip to main content

Using SERS and SEF Spectroscopy to Detect Fullerene-Dye Dyads in Water and Biological Structures

Abstract

The effect of surface enhanced fluorescence (SEF), which is not observed for individual dyes, is detected when registering surface-enhanced Raman scattering (SERS) signals from fullerene-dye dyads PFD-Fl and PFD-Ce6. This is consistent with the theory predicting an inverse dependence of SEF fluorescence on the quantum yield of the stationary fluorescence of compounds in solution. The observed effect allows such hybrid molecular structures to be registered by recording SERS or SEF spectra in the 10−7–10−5 M range of concentrations and opens up the possibility of widely using SERS and SEF to study interaction between these fullerene derivatives and biological structures of different organization levels.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Goodarzi, S., da Ros, T., Conde, J., et al., Mater. Today, 2017, vol. 20, no. 8, p. 460.

    Article  Google Scholar 

  2. Castro, E., Garcia, A.H., Zavala, G., et al., J. Mater. Chem. B, 2017, vol. 5, no. 32, p. 6523.

    Article  Google Scholar 

  3. Rybkin, A.Y., Belik, A.Y., Goryachev, N.S., et al., Dye Pigm., 2020, vol. 180, 108411.

    Google Scholar 

  4. Rybkin, A.Y., Belik, A.Y., Kraevaya, O.A., et al., Dye Pigm., 2019, vol. 160, p. 457.

    Google Scholar 

  5. Rybkin, A.Yu., Belik, A.Yu., Tarkanov, P.A., et al., Makrogeterotsikly, 2019, vol. 12, no. 2, p. 181.

    Google Scholar 

  6. Belik, A.Y., Rybkin, A.Y., Voronov, I.I., et al., Dye Pigm., 2017, vol. 139, p. 65.

    Google Scholar 

  7. Belik, A.Y., Kukushkin, V.I., Rybkin, A.Y., et al., Dokl. Phys. Chem., 2018, vol. 481, no. 1, p. 95.

    Article  Google Scholar 

  8. Poletaeva, D.A., Rybkin, A.Y., Kukushkin, V.I., et al., Dokl. Phys. Chem., 2016, vol. 466, no. 1, p. 23.

    Article  Google Scholar 

  9. Poletaeva, D.A., Khakina, E.A., Kukushkin, V.I., et al., Dokl. Phys. Chem., 2015, vol. 460, no. 1, p. 1.

    Article  Google Scholar 

  10. Kummerlen, J., Leitner, A., Brunner, H., et al., Mol. Phys., 1993, vol. 80, no. 5, p. 1031.

    ADS  Article  Google Scholar 

  11. Das, P.C. and Puri, A., Phys. Rev. B, 2002, vol. 65, no. 15, 1554161.

    Article  Google Scholar 

  12. Kukushkin, V.I., Van’kov, A.B., and Kukushkin, I.V., JETP Lett., 2013, vol. 98, no. 6, p. 342.

    ADS  Article  Google Scholar 

  13. Kukushkin, V.I., Van’kov, A.B., and Kukushkin, I.V., JETP Lett., 2013, vol. 98, no. 2, p. 64.

    ADS  Article  Google Scholar 

  14. Kukushkin, V.I, Grishina, Ya.V., Solov’ev, V.V., et al., JETP Lett., 2017, vol. 105, no. 10, 677.

    ADS  Article  Google Scholar 

  15. Kukushkin, V.I., Grishina, Y.V., Egorov, S.V., et al., JETP Lett., 2016, vol. 103, no. 8, p. 508.

    ADS  Article  Google Scholar 

  16. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., J. Raman Spectrosc., 1996, vol. 27, no. 3.

  17. Zhang, Y., Edens, G., and Weaver, M.J., J. Am. Chem. Soc., 1991, vol. 113, no. 24, p. 9395.

    Article  Google Scholar 

  18. Hildebrandt, P. and Stockburger, M., J. Raman Spectrosc., 1986, vol. 17, no. 1, p. 55.

    ADS  Article  Google Scholar 

  19. Terekhov, S.N., Gladkov, L.L., Gladkova, O.L., et al., Opt. Spectrosc., 2009, vol. 106, no. 6, p. 813.

    ADS  Article  Google Scholar 

  20. Bandy, B.J., Lloyd, D.R., and Richardson, N.V., Surf. Sci., 1979, vol. 89, nos. 1–3, p. 344.

    ADS  Article  Google Scholar 

  21. le Ru, E. and Etchegoin, P., Principles of Surface Enhanced Raman Spectroscopy, Cambridge: Cambridge Univ. Press, 2009, vol. 1.

    Google Scholar 

  22. Weitz, D.A., Garoff, S., Gersten, J.I., et al., J. Electron Spectrosc. Relat. Phenom, 1983, vol. 29, no. 1, p. 363.

    Article  Google Scholar 

  23. Sjöback, R., Nygren, J., and Kubista, M., Spectrochim. Acta, Part A, 1995, vol. 51, no. 6, L7.

    ADS  Article  Google Scholar 

  24. Zenkevich, E., Sagun, E., Knyukshto, V., et al., J. Photochem. Photobiol. B, 1996, vol. 33, no. 2, p. 171.

    Article  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education, State Task no. АААА-А19-119112590105-7. Our work on the synthesis of fullerene derivatives was funded by the RF Ministry of Science and Higher Education, State Task no. AAAA-A19-119071190044-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Rybkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Smirnova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goryachev, N.S., Kukushkin, V.I., Belik, A.Y. et al. Using SERS and SEF Spectroscopy to Detect Fullerene-Dye Dyads in Water and Biological Structures. Bull. Russ. Acad. Sci. Phys. 86, 418–422 (2022). https://doi.org/10.3103/S1062873822040116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822040116