Skip to main content
Log in

Precision Methods of Calculating Problems of Non-Stationary Integrated Photonics

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The solution of the Maxwell equations in layered media has a discontinuity in the derivative or the function at media interfaces. For the first time, finite-difference schemes which converge of discontinuous solutions are proposed. They are two-point bicompact conservative schemes in which the layer boundaries are as grid nodes. A fundamentally new approach is proposed to account for the medium dispersion. The proposed approaches ensure the second order of accuracy for even discontinuous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ropers, C., Park, D.J., Stibenz, G., et al., Phys. Rev. Lett., 2005, vol. 94, 113901.

    Article  ADS  Google Scholar 

  2. Afinogenov, B.I., Popkova, A.A., Bessonov, V.O., and Fedyanin, A.A., Appl. Phys. Lett., 2016, vol. 141, 171107.

    Article  ADS  Google Scholar 

  3. Afinogenov, B.I., Bessonov, V.O., Soboleva, I.V., and Fedyanin, A.A., ACS Photonics, 2019, vol. 6, no. 4, p. 844.

    Article  Google Scholar 

  4. Bruckner, R., Zakhidov, A.A., Scholz, R., et al., Nat. Photonics, 2012, vol. 6, p. 322.

    Article  ADS  Google Scholar 

  5. Symonds, C., Lheureux, G., Hugonin, J.P., et al., Nano Lett., 2013, vol. 13, no. 7, p. 3179.

    Article  ADS  Google Scholar 

  6. Das, R., Srivastava, T., and Jha, R., Opt. Lett., 2014, vol. 39, no. 4, p. 896.

    Article  ADS  Google Scholar 

  7. Badugu, R. and Lakowicz, J.R., J. Phys. Chem. C, 2014, vol. 118, no. 37, p. 21558.

    Article  Google Scholar 

  8. Inan, U.S. and Marshall, R.A., Numerical Electromagnetics: The FDTD Method, Cambridge: Cambridge Univ. Press, 2011.

    Book  Google Scholar 

  9. Yee, K., IEEE Trans. Antennas Propag., 1966, vol. 14, no. 3, p. 302.

    Article  ADS  Google Scholar 

  10. Sullivan, D.M., Electromagnetic Simulation Using the FDTD Method, IEEE Press, 2000.

    Book  Google Scholar 

  11. Petropoulos, P.G., IEEE Trans. Antennas Propag., 1994, vol. 42, no. 1, p. 62.

    Article  ADS  Google Scholar 

  12. Kalitkin, N.N. and Koryakin, P.V., Dokl. Math., 2008, vol. 77, p. 320.

    Article  MathSciNet  Google Scholar 

  13. Kalitkin, N.N. and Koryakin, P.V., Math. Models Comput. Simul., 2010, vol. 2, no. 2, p. 139.

    Article  MathSciNet  Google Scholar 

  14. Tikhonov, A.N. and Samarskii, A.A., Rep. Acad. Sci. USSR, 1959, vol. 8, no. 3, p. 529.

    Google Scholar 

  15. Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to the Theory of Difference Schemes), Moscow: Nauka, 1971.

  16. Samarskii, A.A., Teoriya raznostnykh skhem (The Theory of Difference Schemes), Moscow: Nauka, 1977.

  17. Samarskii, A.A., Teoriya raznostnykh skhem (The Theory of Difference Schemes), Moscow: Nauka, 1979.

  18. Samarskii, A.A. and Popov, Yu.P., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for Solving Problems of Gas Dynamics), Moscow: Nauka, 1992.

  19. Dombrovskaya, Zh.O. and Belov, A.A., J. Phys.: Conf. Ser., 2020, vol. 1461, 012032.

    Google Scholar 

  20. Richardson, L.F. and Gaunt, A., Philos. Trans. R. Soc., A, 1927, vol. 226, nos. 636–646, p. 299.

  21. Marchuk, G.I. and Shaidurov, V.V., Povyshenie tochnosti reshenii raznostnykh skhem (Improving the Accuracy of Solutions to Difference Schemes), Moscow: Nauka, 1979.

  22. Kalitkin, N.N., Al’shin, A.B., Al’shina, E.A., and Rogov, B.V., Vychisleniya na kvaziravnomernykh setkakh (Calculations Using Quasi-Uniform Grids), Moscow: Fizmatlit, 2005.

  23. Meglicki, Z., Gray, S.K., and Norris, B., Comput. Phys. Commun., 2007, vol. 176, p. 109.

    Article  ADS  Google Scholar 

  24. van Londersele, A., de Zutter, D., and Ginste, D.V., J. Comput. Phys., 2017, vol. 342, p. 177.

    Article  ADS  MathSciNet  Google Scholar 

  25. Balsara, D.S. and Simpson, J.J., IEEE J. Multiscale Multiphys. Comput. Tech., 2020, vol. 5, p. 99.

    Article  ADS  Google Scholar 

  26. Ryaben’kii, V.S. and Filippov, A.F., Ob ustoichivosti raznostnykh uravnenii (On the Stability of Difference Equations), Moscow: Gostekhizdat, 1956.

  27. Popkova, A.A., Chezhegov, A.A., Soboleva, I.V., et al., J. Phys.: Conf. Ser., 2020, vol. 1461, 012134.

    Google Scholar 

  28. DLC Coating. http://www.izovac-coatings.com/en.

  29. Taflove, A. and Hagness, S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, London: Artech House, 2005.

    MATH  Google Scholar 

  30. Belov, A.A., Kalitkin, N.N., and Kozlitin, I.A., Fusion Eng. Des., 2019, vol. 141, p. 51.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-71-00097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Vetrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, A.A., Dombrovskaya, Z.O. Precision Methods of Calculating Problems of Non-Stationary Integrated Photonics. Bull. Russ. Acad. Sci. Phys. 86, 205–210 (2022). https://doi.org/10.3103/S1062873822020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822020071

Navigation