Skip to main content
Log in

Counterpropagating Four-Wave Mixing in a Transparent Suspension of Nanoparticles in the Earth’s Gravity Field

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A theoretical analysis is performed of the spatial spectrum of an object wave during four-wave mixing in a transparent nanoparticle suspension. It is shown there is a dip in the modulus of the object wave amplitude near the zero spatial frequency when the counterpropagating pump waves are orthogonal to the force of gravity acting on the nanoparticles. The half-width of the dip grows along with the effective mass of a nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Boltaev, G.S., Ganeev, R.A., Krishnendu, P.S., et al., Appl. Phys. A, 2018, vol. 124, 766.

    Article  ADS  Google Scholar 

  2. Karimullin, K.R., Arzhanov, A.I., and Naumov, A.V., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 12, p. 1396.

    Article  Google Scholar 

  3. Krishnakanth, K.N., Bharathi, M.S.S., Hamad, S., and Venugopal, R.S., AIP Conf. Proc., 2018, vol. 1942, 050122.

    Article  Google Scholar 

  4. Nallusamy, N., Zu, P., Raja, R.V.J., et al., Appl. Opt., 2019, vol. 58, no. 2, p. 333.

    Article  ADS  Google Scholar 

  5. Luers, A., Salhlberg, A.-L., Hochgreb, S., and Ewart, P., Appl. Phys. B, 2018, vol. 124, 43.

    Article  ADS  Google Scholar 

  6. Salman, A.M., Salman, A.A., and Al-Janabi, A., Appl. Opt., 2019, vol. 58, no. 22, p. 6136.

    Article  ADS  Google Scholar 

  7. Mjagotin, A.V., Ivanova, G.D., Kirjushina, S.I., and Ivanov, V.I., Proc. SPIE, 2019, vol. 11208, 1120861.

    Google Scholar 

  8. Ko, B., Lu, W., Sokolov, A.V., Lee, H.W.H., et al., Sci. Rep., 2020, vol. 10, 15753.

    ADS  Google Scholar 

  9. Ivanov, V.I. and Ivanova, G.D., Proc. SPIE, 2018, vol. 10833, 108331S.

    Google Scholar 

  10. Qiu, W., Bruus, H., and Augustsson, P., Phys. Rev. E, 2020, vol. 102, 013108.

    Article  ADS  Google Scholar 

  11. Xiang, D., Wu, J., Rottler, J., and Gordon, R., Nano Lett., 2016, vol. 16, p. 3638.

    Article  ADS  Google Scholar 

  12. Giannakopoulou, N., Williams, J.B., Moody, P.R., et al., Nanoscale, 2020, vol. 12, p. 4622.

    Article  Google Scholar 

  13. Samim, M., Krouglov, S., James, D.F., and Barzda, V., J. Opt. Soc. Am. B, 2016, vol. 33, no. 12, p. 2617.

    Article  ADS  Google Scholar 

  14. Afanas’ev, A.A, Gaida, L.S, Kurochkin, Yu.A, et al., Quantum Electron., 2016, vol. 46, no. 10, p. 891.

  15. Vorob’eva, E.V., Ivakhnik, V.V., and Savel’ev, M.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2015, vol. 58, no. 11/3, p. 162.

  16. Ivakhnik, V.V., Obrashchenie volnovogo fronta pri chetyrekhvolnovom vzaimodeistvii (Wavefront Reversal in Four-Wave Interaction), Samara: Samarskii Univ., 2010.

  17. Ivakhnik, V.V. and Savelyev, M.V., Comput. Opt., 2015, vol. 39, no. 2, p. 197.

    Article  ADS  Google Scholar 

  18. Ivakhnik, V.V. and Savelyev, M.V., Comput. Opt., 2016, vol. 40, no. 1, p. 19.

    Article  ADS  Google Scholar 

  19. Ivakhnik, V.V. and Savel’ev, M.V., J. Phys.: Conf. Ser., 2016, vol. 737, 012007.

    Google Scholar 

  20. Voyutskii, S.S., Kurs kolloidnoi khimii (Colloidal Chemistry), Moscow: Khimiya, 1975.

  21. Cherepanov, I.N., Tech. Phys., 2018, vol. 63, no. 12, p. 1703.

    Article  Google Scholar 

  22. Croccolo, F., Garcia-Fernandez, L., Bataller, H., et al., Phys. Rev. E, 2019, vol. 99, 012602.

    Article  ADS  Google Scholar 

  23. Khe, V.K., Ivanov, V.I., Ivanova, G.D., and Chigrin, P.G., Proc. SPIE, 2017, vol. 10466, 104664K.

    Google Scholar 

  24. Savelyev, M.V. and Ivakhnik, V.V., Radiophys. Quantum Electron., 2021, vol. 63, no. 8, p. 625.

    Article  ADS  Google Scholar 

  25. Ivakhnik, V.V. and Savel’ev, M.V., Fiz. Volnovykh Protsessov Radiotekh. Sist., 2018, vol. 21, no. 2, p. 5.

    Google Scholar 

  26. Livashvili, A.I., Kostina, G.V., and Yakunina, M.I., J. Opt. Technol., 2013, vol. 80, no. 2, p. 124.

    Article  Google Scholar 

  27. Ivanov, V.I., Ivanova, G.D., and Myagotin, A.V., Proc. SPIE, 2019, vol. 11024, 110240Y.

    Google Scholar 

  28. Tabiryan, N.V. and Luo, W., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 57, no. 4, p. 4431.

    Article  Google Scholar 

  29. Gerakis, A., Yeh, Y.-W., Shneider, M.N., et al., Phys. Rev. Appl., 2018, vol. 9, 014031.

    Article  ADS  Google Scholar 

  30. Wang, H.-C., Yu, X.-Y., Chueh, Y.L., et al., Opt. Express, 2011, vol. 19, no. 20, p. 18893.

    Article  ADS  Google Scholar 

  31. Larsson, C. and Kumar, S., Phys. Rev. Fluids, 2021, vol. 6, 034004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Remzov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mukhortova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remzov, A.D., Savelyev, M.V. Counterpropagating Four-Wave Mixing in a Transparent Suspension of Nanoparticles in the Earth’s Gravity Field. Bull. Russ. Acad. Sci. Phys. 85, 1415–1419 (2021). https://doi.org/10.3103/S1062873821120261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821120261

Navigation