Skip to main content
Log in

Manifestation of the Gyrotropy of Topological Media in Nonlinear Optical Processes

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Nonlinear optical processes are considered, including the generation of the third harmonic and the rotation of the polarization vector of a wave, which depends on the intensity of light in media whose properties are due to the non-zero Berry curvature. The associated gyrotropy results in a dependence of the phase velocity on the polarization of the radiation, which violates the condition phase matching for one of the polarization components of the interacting waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fu, M. and Kane, M., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, no. 4, 045302.

    Article  ADS  Google Scholar 

  2. Hasan, M.Z. and Kane, C.L., Rev. Mod. Phys., 2010, vol. 82, no. 4, p. 3045.

    Article  ADS  Google Scholar 

  3. Ando, Y., J. Phys. Soc. Jpn., 2013, vol. 82, 102001.

    Article  ADS  Google Scholar 

  4. Bansil, A., Hsin Lin, and Tanmoy Das, Rev. Mod. Phys., 2016 V. 88, 021004.

    Article  ADS  Google Scholar 

  5. Hasan, M.Z., Xu Su-Ya, and Bian, G., Phys. Scr., T, 2015, vol. 164, 014001.

    Article  ADS  Google Scholar 

  6. He, Ch., Lin, L., Sun, X.-Ch., et al., Int. J. Mod. Phys. B, 2014, vol. 28, 1441001.

    Article  ADS  Google Scholar 

  7. Lu, L., Joannopoulos, J.D., and Soljacic, M., Nat. Photon., 2014, vol. 248, p. 821.

    Article  ADS  Google Scholar 

  8. Ozawa, T., Price, H.M., Amo, A., et al., Rev. Mod. Phys., 2019, vol. 91, 015006.

    Article  ADS  Google Scholar 

  9. Landau, L.D. and Lifshits, E.M. Teoreticheskaya fizika (Theoretical Physics), vol. 3: Kvantovaya mekhanika (nerelyativistskaya teoriya) (Quantum Mechanics (Nonrelativistic Theory)), Moscow: Nauka, 2002.

  10. Kittel, C., Quantum Theory of Solids, New York: Wiley, 1991, 2nd ed.

    MATH  Google Scholar 

  11. Lifshits, E.M. and Pitaevskii, L.P., Statisticheskaya fizika (Statistical Physics), part 2: Teoriya kondensirovannogo sostoyaniya (Condensed Matter Theory), Moscow: Fizmatlit, 2004.

  12. Di Xiao, Ming-Che Chang, and Qian Niu, Rev. Mod. Phys., 2010, vol. 82, p. 1959.

    Article  ADS  Google Scholar 

  13. Nagaosa, N., Sinova, J., Onoda, Sh., et al., Rev. Mod. Phys., 2010, vol. 82, p. 1539.

    Article  ADS  Google Scholar 

  14. Martina, L., Theor. Math. Phys., 2011, vol. 167, p. 816.

    Article  Google Scholar 

  15. Duval, C. and Horvathy, P.A., Theor. Math. Phys., 2005, vol. 144, p. 899.

    Article  Google Scholar 

  16. Basu, B., Dhar, S., and Ghosh, S., Europhys. Lett., 2006, vol. 76, no. 3, p. 395.

    Article  ADS  MathSciNet  Google Scholar 

  17. Bliokh, R.Yu. and Bliokh, Yu.P., Ann. Phys., 2005, no. 1, p. 13.

  18. Geometric Phases in Physics, Shapere, A. and Wilczek, F., Eds., Advanced Series in Mathematical Physics, vol. 5, Singapore: World Sci., 1989.

  19. Shen, I.R., The Principles of Nonlinear Optics, New York: Wiley, 2002.

  20. Wilczek, F., Phys. Rev. Lett., 1987, vol. 58, no. 18, p. 1799.

    Article  ADS  Google Scholar 

  21. Essin, A.M., Moore, J.E., and Vanderbilt, D., Phys. Rev. Lett., 2009, vol. 102, 1468057.

    Article  Google Scholar 

  22. Visinelli, L., Mod. Phys. Lett. A, 2014, vol. 28, p. 35.

    MathSciNet  Google Scholar 

  23. Sekine, A. and Nomura, K., arXiv:2011.13601v1, 2020.

  24. Novotny, L. and Hecht, B., Principles of Nano-Optics, New York: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  25. Maimistov, A.I. and Lyashko, E.I., Opt. Spectrosc., 2019, vol. 127, no. 5, p. 871.

    Article  ADS  Google Scholar 

  26. Maimistov, A.I., Opt. Spectrosc., 2021, vol. 129, no. 1, p. 110.

    Article  ADS  Google Scholar 

  27. Zyuzin, A.A. and Burkov, A.A., Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 86, 115133.

    Article  ADS  Google Scholar 

  28. Zyuzin, A.A. and Zyuzin, A.Yu., Phys. Rev. B, 2017, vol. 95, 085127.

    Article  ADS  Google Scholar 

  29. Kotov, O.V. and Lozovik, Yu.E., Phys. Rev. B, 2018, vol. 98, 195446.

    Article  ADS  Google Scholar 

  30. Zebin Qiu, Gaoqing Cao, and Xu-Guang Huang, Phys. Rev. D, 2017, vol. 95, 036002.

    Article  ADS  Google Scholar 

  31. Maimistov, A.I., Lyashko, E.I., and Elyutin, S.O., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 1, p. 1.

    Article  MathSciNet  Google Scholar 

  32. Maimistov, A.I. and Lyashko, E.I., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 3, p. 250.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Maimistov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimistov, A.I. Manifestation of the Gyrotropy of Topological Media in Nonlinear Optical Processes. Bull. Russ. Acad. Sci. Phys. 85, 1429–1433 (2021). https://doi.org/10.3103/S1062873821120236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821120236

Navigation