Skip to main content

Accumulation of Defects in Polycrystalline Copper–Aluminum Solid Solutions and the Role of Stacking Fault Energy

Abstract

Transmission diffraction electron microscopy is used to study the evolution of a dislocation structure during active plastic deformation in copper–aluminum alloys in the 0–14 at % Al range of concentrations. Types of dislocation substructures are determined from micrographs, depending on the concentration of the alloying element. The parameters of the defect structure are measured and their relationship to stacking fault energy is established.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Koneva, N.A. and Kozlov, E.V., in Strukturnye urovni plasticheskoi deformatsii i razrusheniya (Structural Levels of Plastic Deformation and Fracture), Novosibirsk: Nauka, 1990, p. 123.

  2. 2

    Koneva, N.A. and Kozlov, E.V., Sov. Phys. J., 1990, vol. 33, no. 2, p. 165.

    Article  Google Scholar 

  3. 3

    Sevillano, J.G., Mater. Sci. Technol., 1994, vol. 6, p. 21.

    Google Scholar 

  4. 4

    Dini, G., Ueji, R., Najafizadeh, A., and Minir, S.M., Mater. Sci. Eng., A, 2010, vol. 527, p. 2759.

    Article  Google Scholar 

  5. 5

    Zhao, Y.H., Liao, X.Z., Horita, Z., et al., Mater. Sci. Eng., A, 2008, vol. 493, p. 123.

    Article  Google Scholar 

  6. 6

    Steffens, Th., Schwink, Ch., Korner, A., and Karnthaler, H.P., Philos. Mag. A, 1987, vol. 56, no. 2, p. 161.

    ADS  Article  Google Scholar 

  7. 7

    Crampin, S., Vedensky, D.D., and Monnier, R., Philos. Mag. A, 1993, vol. 67, no. 6, p. 1447.

    ADS  Article  Google Scholar 

  8. 8

    Dudarev, E.F., Kornienko, A.L., and Bakach, G.P., Sov. Phys. J., 1991, vol. 34, no. 3, p. 207.

    Article  Google Scholar 

  9. 9

    Konovalova, E.V., Cand. Sci. (Phys.–Math.) Dissertation, Tomsk: Tomsk State Univ., 2001.

  10. 10

    Koneva, N.A., Cherkasova, T.V., Trishkina, L.I., et al., Dislokatsionnaya struktura i dislokatsionnye substruktury. Elektronno-mikroskopicheskie metody izmereniya ikh parametrov (Dislocation Structure and Dislocation Substructures: Parameters Measured by Electron Microscopy), Novokuznetsk: Sib. Gos. Ind. Univ., 2019.

  11. 11

    Koneva, N.A., Trishkina, L.I., and Cherkasova, T.V., Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 6, p. 756.

    Article  Google Scholar 

  12. 12

    Koneva, N.A., Trishkina, L.I., Cherkasova, T.V., and Kozlov, E.V., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, p. 391.

    Article  Google Scholar 

  13. 13

    Koneva, N.A., Trishkina, L.I., and Cherkasova, T.V., Lett. Mater., 2017, vol. 7, no. 3, p. 282.

    Article  Google Scholar 

  14. 14

    Kozlov, E.V., Trishkina, L.I., Cherkasova, T.V., and Koneva, N.A., Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 5, p. 670.

    Article  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Education and Science, project no. FEMN-2020-0004.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. V. Cherkasova.

Additional information

Translated by I. Obrezanova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koneva, N.A., Trishkina, L.I., Cherkasova, T.V. et al. Accumulation of Defects in Polycrystalline Copper–Aluminum Solid Solutions and the Role of Stacking Fault Energy. Bull. Russ. Acad. Sci. Phys. 85, 937–940 (2021). https://doi.org/10.3103/S1062873821090197

Download citation