Skip to main content
Log in

Stress–Strain State of a Tube of Heterophase Alloy Subjected to Internal Pressure in an Inhomogeneous Temperature Field

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A study is performed of the effect the distribution of temperature has on the stress–strain state of a tube made of disperse-hardened aluminum loaded with internal pressure. The stress–strain state of a heated tube is characterized by the maximum values of tangential and axial stresses in the vicinity of the inner wall. That of a cooled one, by the same values in the vicinity of the outer wall. The absolute values of radial stresses fall monotonically as the distance from the inner wall of the tube grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Berezovskii, V.V., Shavnev, A.A., Lomov, S.B., and Kurganova, Yu.A., Aviats. Mater. Tekhnol., 2014, no. 6, p. 17.

  2. Karabasov, Yu.S., Novye materialy (New Materials), Moscow: MISiS, 2002.

  3. Matvienko, O., Daneyko, O., and Kovalevskaya, T., Acta Met. Sin. (Engl. Lett.), 2018, vol. 31, no. 12, p. 1297.

  4. Saunders, E.A.D., Heat Exchangers: Selection, Design and Construction, New York: Longman, 1988.

    Google Scholar 

  5. Matvienko, O.V., Daneiko, O.I., and Kovalevskaya, T.A., Fundam. Probl. Sovrem. Materialoved., 2020, vol. 17, no. 3, p. 330.

    Google Scholar 

  6. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2017, vol. 60, no. 2, p. 236.

    Article  Google Scholar 

  7. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2017, vol. 60, no. 4, p. 562.

    Article  Google Scholar 

  8. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2017, vol. 60, no. 7, p. 1233.

    Article  Google Scholar 

  9. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2018, vol. 61, no. 8, p. 1520.

    Article  Google Scholar 

  10. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2018, vol. 62, no. 4, p. 720.

    Article  Google Scholar 

  11. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2020, vol. 61, no. 8, p. 1805.

    Article  Google Scholar 

  12. Matvienko, O., Daneyko, O., and Kovalevskaya, T., MATEC Web Conf., 2018, vol. 243, 00022.

  13. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2020, vol. 63, no. 5, p. 779.

    Article  Google Scholar 

  14. Daneyko, O.I., Kovalevskaya, T.A., and Matvienko, O.V., Russ. Phys. J., 2018, vol. 61, no. 7, p. 1229.

    Article  Google Scholar 

  15. Daneyko, O.I., Kovalevskaya, T.A., and Kulaeva, N.A., Russ. Phys. J., 2017, vol. 60, no. 3, p. 508.

    Article  Google Scholar 

  16. Daneyko, O.I. and Kovalevskaya, T.A., Russ. Phys. J., 2018, vol. 61, no. 9, p. 1687.

    Article  Google Scholar 

  17. Daneyko, O.I., Kovalevskaya, T.A., Kulaeva, N.A., et al., Russ. Phys. J., 2017, vol. 60, no. 5, p. 821.

    Article  Google Scholar 

  18. Kovalevskaya, T.A. and Daneyko, O.I., Russ. Phys. J., 2020, vol. 62, no. 12, p. 2247.

    Article  Google Scholar 

  19. Kovalevskaya, T.A., Daneyko, O.I., and Shalygina, T.A., Russ. Phys. J., 2020, vol. 63, no. 4, p. 688.

    Article  Google Scholar 

  20. Arnhold, V. and Hummert, K., New Materials by Mechanical Alloying Techniques, Oberursel: DGM Inf., 1989, p. 263.

    Google Scholar 

  21. Weber, J.H. and Schelleng, R.D., Dispersion Strengthened Aluminum Alloys, Warrendale: TMS, 1988, p. 468.

    Google Scholar 

  22. Ashby, M.F. and Johnson, K., Materials and Design: The Art and Science of Materials Selection in Product Design, Oxford: Butterworth Heinemann, 2002.

    Google Scholar 

  23. Hymphreys, F.J. and Martin, J.W., Philos. Mag., 1967, vol. 16, no. 143, p. 927.

    Article  ADS  Google Scholar 

  24. Orowan, E., in Symposium on Internal Stresses in Metals and Alloys, London: Inst. Met., 1948, p. 451.

  25. Ashby, M.F., Philos. Mag., 1966, vol. 14, p. 1157.

    Article  ADS  Google Scholar 

  26. Ebeling, R. and Ashby, M.F., Philos. Mag., 1966, vol. 13, p. 805.

    Article  ADS  Google Scholar 

  27. Hirsch, P.B. and Hymphreys, F.J., Scr. Metall. Mater., 1973, vol. 7, p. 259.

    Article  Google Scholar 

  28. Hazzledine, P.M. and Hirsch, P.B., Philos. Mag., 1974, vol. 30, p. 1331.

    Article  ADS  Google Scholar 

  29. Humphreys, F.J. and Hirsch, P.B., Philos. Mag., 1976, vol. 34, p. 373.

    Article  ADS  Google Scholar 

  30. Kovalevskaya, T.A., Vinogradova, I.V., and Popov, L.E., Matematicheskoe modelirovanie plasticheskoi deformatsii geterofaznykh splavov (Mathematical Modeling of Plastic Deformation of Heterophase Alloys), Tomsk: Tomsk. Gos. Univ., 1992.

  31. Humphreys, F.J. and Hirsch, P.B., Proc. Phys. Soc., 1973, vol. 318, no. 1532, p. 73.

    Google Scholar 

  32. Luts, A.R. and Galochkina, I.A., Alyuminievye kompozitsionnye splavy — splavy budushchego (Aluminum Composite Alloys: Alloys of the Future), Samara: Samarsk. Gos. Tekh. Univ., 2013.

  33. Matthews, F.L. and Rawlings, R.D., Composite Materials: Engineering and Science, London: Woodhead, 1999.

    Google Scholar 

  34. Gorshkov, A.G., Starovoitov, E.I., and Tarlakovskii, D.V., Teoriya uprugosti i plastichnosti (The Theory of Elasticity and Plasticity), Moscow: Fizmatlit, 2002.

  35. Polmear, L.J., Light Alloys: Metallurgy of Lights Metals, New York: Willey, 1995.

    Google Scholar 

  36. Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of the Theory of Heat Transfer), Moscow: Atomizdat, 1979.

  37. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creep), Moscow: Mashinostroenie, 1975.

  38. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2018, vol. 61, no. 4, p. 730.

    Article  Google Scholar 

  39. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, New York: McGraw-Hill, 2010.

    MATH  Google Scholar 

  40. Matvienko, O.V., Daneyko, O.I., and Kovalevskaya, T.A., Russ. Phys. J., 2018, vol. 61, no. 5, p. 962.

    Article  Google Scholar 

  41. Chakrabarty, J., Theory of Plasticity, New York: McGraw-Hill, 1987.

    Google Scholar 

  42. Chapra, S., Numerical Methods for Engineers, New York: McGraw-Hill, 2015.

    Google Scholar 

Download references

Funding

This work was performed as part of a State Task from the RF Ministry of Science and Higher Education, topic no. FEMN-2020-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Danyeko, O.I. & Kovalevskaya, T.A. Stress–Strain State of a Tube of Heterophase Alloy Subjected to Internal Pressure in an Inhomogeneous Temperature Field. Bull. Russ. Acad. Sci. Phys. 85, 791–797 (2021). https://doi.org/10.3103/S1062873821070157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821070157

Navigation