Skip to main content
Log in

Formation of the Maximum Strength of Dispersion-Hardened Crystalline Aluminum-Based Alloys Containing Incoherent Particles

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Mathematical modeling of the plastic deformation of dispersion-hardened crystalline aluminum-based alloys with incoherent particles is done with allowance for the evolution of defect structure. It is found that strength properties are considerably higher in materials with nanosized particles than in materials with larger particles at the same volume fraction of the strengthening phase. The emergence of dipole dislocation configurations in the defect system creates conditions for a considerable increase in flow stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vorozhtsov, S.A., Eskin, D.G., Tamayo, J., et al., Metall. Mater. Trans. A, 2015, vol. 46, p. 2870.

    Article  Google Scholar 

  2. Khrustalev, A., Vorozhtsov, A., Kazantseva, L., et al., MATEC Web Conf., 2018, vol. 243, 00020.

  3. Kovalevskaya, T.A., Vinogradova, I.V., and Popov, L.E., Matematicheskoe modelirovanie plasticheskoi deformatsii geterofaznykh splavov (Mathematical Simulation of Plastic Deformation of Heterophase Alloys), Tomsk: Tomsk. Gos. Univ., 1992.

  4. Orowan, E., Proc. of the Symp. on Internal Stresses in Metalls, 1948, p. 451.

  5. Ashby, M.F., Philos. Mag., 1966, vol. 14, no. 132, p. 1157.

    Article  ADS  Google Scholar 

  6. Ashby, M.F., in Physics of Strength and Plasticity, Argon, A.S., Ed., Boston: MIT Press, 1969, p. 113.

    Google Scholar 

  7. Ebeling, R. and Ashby, M.F., Philos. Mag., 1966, vol. 13, no. 124, p. 805.

    Article  ADS  Google Scholar 

  8. Hirsch, P.B. and Humphrey, F.J., in Physics of Strength and Plasticity, Argon, A.S., Ed., Boston: MIT Press, 1969, p. 189.

    Google Scholar 

  9. Hazzledine, P.M. and Hirsch, P.B., Philos. Mag., 1974, vol. 30, no. 6, p. 1331.

    Article  ADS  Google Scholar 

  10. Stewart, A.T. and Martin, J.W., Acta Metall., 1975, vol. 23, p. 1.

    Article  Google Scholar 

  11. Daneyko, O.I., Kovalevskaya, T.A., Matvienko, O.V., Russ. Phys. J., 2018, vol. 61, no. 7, p. 1229.

    Article  Google Scholar 

  12. Daneyko, O.I. and Kovalevskaya, T.A., Russ. Phys. J., 2018, vol. 61, no. 9, p. 1687.

    Article  Google Scholar 

  13. Daneyko, O.I., Kovalevskaya, T.A., Kulaeva, N.A., et al., Russ. Phys. J., 2017, vol. 60, no. 5, p. 821.

    Article  Google Scholar 

  14. Matvienko, O., Daneyko, O., and Kovalevskaya, T., Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, no. 12, p. 1297.

  15. Johnson, K.J., Numerical Methods in Chemistry, New York: Marcel Dekker, 1980.

    Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of State Task no. FEMN-2020-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Daneyko.

Additional information

Translated by M. Samokhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevskaya, T.A., Daneyko, O.I. Formation of the Maximum Strength of Dispersion-Hardened Crystalline Aluminum-Based Alloys Containing Incoherent Particles. Bull. Russ. Acad. Sci. Phys. 85, 776–781 (2021). https://doi.org/10.3103/S1062873821070133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821070133

Navigation