Skip to main content

Correlation between the Mechanical and Thermal Properties of Common Pine Wood (Pínus sylvéstris L.)

Abstract

Correlations between the mechanical and thermal properties of the anisotropy of common pine wood with different humidities are identified. This allows quick assessment of mechanical properties, which usually requires labor- and material-intensive destructive tests, with express nondestructive measurements of thermal properties via transient thermal imaging.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Meyers, M.A., Chen, P.-Y., Lin, A.Y.-M., and Seki, Y., Prog. Mater. Sci., 2008, vol. 53, p. 1.

    Article  Google Scholar 

  2. 2

    Pickering, K.L., Efendy, M.G.A., and Le, T.M., Composites, Part A, 2016, vol. 83, p. 98.

    Article  Google Scholar 

  3. 3

    Hsueh, C.-H., Schmauder, S., Chen, C.-S., and Chawla, K.K., Handbook of Mechanics of Materials, Singapore: Springer, 2019.

    Google Scholar 

  4. 4

    Hull, D. and Clyne, T.W., An Introduction to Composite Materials, Cambridge: Cambridge Univ. Press, 2019.

    Google Scholar 

  5. 5

    Luan, C., Movva, S., Wang, K., et al., Funct. Compos. Struct., 2019, vol. 1, 042002.

    ADS  Article  Google Scholar 

  6. 6

    Rajak, D.K., Pagar, D.D., Menezes, P.L., and Linul, E., Polymers, 2019, vol. 11, 1667.

    Article  Google Scholar 

  7. 7

    Pickering, K.L., Efendy, M.G.A., and Le, T.M., Composites, Part A, 2016, vol. 83, p. 98.

    Article  Google Scholar 

  8. 8

    Mvondo, R.R.N., Meukam, P., Jeong, J., et al., Res. Phys., 2017, vol. 7, p. 2096.

    Google Scholar 

  9. 9

    Kretschmann, D.E., in General Technical Report FPL-GTR-190, ch. 5, Madison: U.S. Department of Agriculture, Forest Service, Forest Prod. Lab., 2010, p. 5.1.

  10. 10

    Fournier, M., Dlouha, J., Jaouen, G., and Almeras, T., J. Exp. Bot., 2013, vol. 64, no. 15, p. 4793.

    Article  Google Scholar 

  11. 11

    Golovin, Y.I., Tyurin, A.I., Golovin, D.Yu., et al., Tech. Phys. Lett., 2021, vol. 47, no. 1, p. 92.

    ADS  Article  Google Scholar 

  12. 12

    Golovin, D.Yu., Tyurin, A.I., Samodurov, A.A., Divin, A.G., and Golovin, Yu.I., Dinamicheskie termograficheskie metody nerazrushayushchego ekspress-kontrolya (Dynamic Thermographic Methods of Nondestructive Rapid Control), Moscow: Tekhnosfera, 2019.

  13. 13

    Golovin, D.Yu., Divin, A.G., Samodurov, A.A., et al., Failure Analysis, London: InTech, 2019.

    Google Scholar 

  14. 14

    Golovin, Yu.I., Tyurin, A.I., Golovin, D.Yu., and Samodurov, A.A., RF Patent 2701775, 2019.

  15. 15

    Golovin, Yu.I., Samodurov, A.A., Tyurin, A.I., et al., RF Patent 2701881, 2019.

  16. 16

    Golovin, D.Yu., Divin, A.G., Samodurov, A.A., et al., J. Eng. Phys. Thermophys., 2020, vol. 93, no. 1, p. 234.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was done with the support of Moscow State University and equipment at the shared resource center of Tambov State University.

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00602.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Translated by I. Obrezanova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Golovin, D.Y., Samodurov, A.A. et al. Correlation between the Mechanical and Thermal Properties of Common Pine Wood (Pínus sylvéstris L.). Bull. Russ. Acad. Sci. Phys. 85, 723–727 (2021). https://doi.org/10.3103/S1062873821070091

Download citation