Skip to main content

Using Mandelstam–Brillouin Spectroscopy to Study Energy-Efficient Devices for Processing Information Signals on the Basis of Magnon Straintronics

Abstract

The possibility of controlling the spin-waveguide modes of propagation of a strain signal in lateral arrays of a magnon-crystal structure with a piezoelectric layer is shown via Mandelstam–Brillouin spectroscopy of magnetic materials with spatial and frequency resolution. The possibility of controlling the dipole spin-wave coupling in a lateral array of ferromagnetic strips by creating local deformations in the region of localization of spin-wave excitations is demonstrated. It is shown that changing the absolute magnitude and sign of the electric field allows effective control over the properties of propagating spin waves and the spatial distribution of the intensity of dynamic magnetization in the lateral structure at frequencies in the spectrum of surface magnetostatic waves.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Nikitov, S.A., Safin, A.R., Kalyabin, D.V., et al., Phys.—Usp., 2020, vol. 63, p. 945.

    ADS  Article  Google Scholar 

  2. Nikitov, S.A., Kalyabin, D.V., Lisenkov, I.V., et al., Phys.—Usp., 2015, vol. 58, no. 10, p. 1002.

    ADS  Article  Google Scholar 

  3. Kruglyak, V.V., Demokritov, S.O., and Grundler, D., J. Phys. D: Appl. Phys., 2010, vol. 43, 264001.

    ADS  Article  Google Scholar 

  4. Serga, A.A., Chumak, A.V., and Hillebrands, B., J. Phys. D: Appl. Phys., 2010, vol. 43, 264002.

    ADS  Article  Google Scholar 

  5. Khitun, A., Bao, M., and Wang, K.L., J. Phys. D: Appl. Phys., 2010, vol. 43, 264005.

    ADS  Article  Google Scholar 

  6. Awschalom, D.D. and Flatte, M.E., Nat. Phys., 2007, vol. 3, p. 153.

    Article  Google Scholar 

  7. Chappert, C., Fert, A., and Frédéric Nguyen Van Dau, Nat. Mater., 2007, vol. 6, p. 813.

    ADS  Article  Google Scholar 

  8. Bader, S.D. and Parkin, S.S.P., Annu. Rev. Condens. Matter Phys., 2010, vol. 1, p. 71.

    ADS  Article  Google Scholar 

  9. Bukharaev, A.A., Zvezdin, A.K., Pyatakov, A.P., and Fetisov, Yu.K., Phys.—Usp., 2018, vol. 61, p. 1175.

    ADS  Article  Google Scholar 

  10. Sander, D., Valenzuela, S.O., and Makarov, D., J. Phys. D: Appl. Phys., 2017, vol. 50, 363001.

    Article  Google Scholar 

  11. Fetisov, Y.K. and Srinivasan, G., Appl. Phys. Lett., 2006, vol. 88, 143503.

    ADS  Article  Google Scholar 

  12. Fetisov, Y.K. and Srinivasan, G., Appl. Phys. Lett., 2008, vol. 93, 033508.

    ADS  Article  Google Scholar 

  13. Ustinov, A.B., Fetisov, Y.K., and Srinivasan, G., Tech. Phys. Lett., 2008, vol. 34, p. 593.

    ADS  Article  Google Scholar 

  14. Ustinov, A.B., Fetisov, Y.K., Lebedev, S.V., and Srinivasan, G., Tech. Phys. Lett., 2010, vol. 36, p. 166.

    ADS  Article  Google Scholar 

  15. Sadovnikov, A.V., Beginin, E.N., Sheshukova, S.E., et al., Phys. Rev. B, 2019, vol. 99, 054424.

    ADS  Article  Google Scholar 

  16. Sadovnikov, A.V., Grachev, A.A., Beginin, E.N., et al., Phys. Rev. Appl., 2017, vol. 7, 014013.

    ADS  Article  Google Scholar 

  17. Sadovnikov, A.V., Grachev, A.A., Beginin, E.N., et al., IEEE Trans. Magn., 2017, vol. 53, 2801804.

    Google Scholar 

  18. Sadovnikov, A.V., Grachev, A.A., Sheshukova, S.E., et al., Phys. Rev. Lett., 2018, vol. 120, 257203.

    ADS  Article  Google Scholar 

  19. Spin Wave Confinement: Propagating Waves, Demokritov, S.O., Ed., Jenny Stanford, 2017.

    Google Scholar 

  20. Shikoh, E., Ando, K., Saitoh, E., et al., Phys. Rev. Lett., 2013, vol. 110, 127201.

    ADS  Article  Google Scholar 

  21. Onbasli, M.C., Kehlberger, A., Kim, D.H., et al., APL Mater., 2014, vol. 2, 106102.

    ADS  Article  Google Scholar 

  22. Barabanenkov, Y., Osokin, S., Kalyabin, D., and Nikitov, S., Phys. Rev. B, 2016, vol. 94, 184409.

    ADS  Article  Google Scholar 

  23. Tikhonov, V.V. and Nikitov, S.A., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 8, p. 969.

    Article  Google Scholar 

Download references

Funding

An experimental study of the methods for controlling a spin-wave signal in a three-dimensional magnon-crystal structure with a piezoelectric layer was supported by the Russian Science Foundation (project no. 20-79-10191). The fabrication of the reference structure was carried out within the framework of a grant from the President of the Russian Federation (project no. MK-1870.2020.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sadovnikov.

Additional information

Translated by V. Alekseev

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, A.V., Nikitov, S.A. Using Mandelstam–Brillouin Spectroscopy to Study Energy-Efficient Devices for Processing Information Signals on the Basis of Magnon Straintronics. Bull. Russ. Acad. Sci. Phys. 85, 595–598 (2021). https://doi.org/10.3103/S1062873821060216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821060216