Skip to main content
Log in

Estimating the Velocity of Rotational Waves in the Simple Cubic Lattice of a Fullerite Crystal

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A three-dimensional mathematical model of the simple cubic lattice of a fullerite crystal is elaborated via structural modeling. Analytical dependences are obtained for the velocities of acoustic waves and rotational waves on the parameters of the microstructure of such a medium. It is shown that the velocity of rotational waves can exceed that of transverse waves, depending on the parameters of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gulyaev, Yu.V., Lagar’kov, A.N., and Nikitov, S.A., Vestn. Ross. Akad. Nauk, 2008, vol. 78, no. 5, p. 438.

    Google Scholar 

  2. Shining Zhu and Xiang Zhang, Nat. Sci. Rev., 2018, vol. 5, no. 2, p. 131.

    Article  Google Scholar 

  3. Bobrovnitskii, Yu.I., Acoust. Phys., 2014, vol. 60, no. 4, p. 371.

    Article  ADS  Google Scholar 

  4. Bobrovnitskii, Yu.I., Acoust. Phys., 2015, vol. 61, no. 3, p. 255.

    Article  ADS  Google Scholar 

  5. Fedotovskii, V.S., Acoust. Phys., 2018, vol. 64, no. 5, p. 548.

    Article  ADS  Google Scholar 

  6. Cummer, S.A., Christensen, J., and Alù, A., Nat. Rev. Mater., 2016, vol. 1, 1601.

    Article  Google Scholar 

  7. Zhou, L. and Jiang, H., Phys. Status Solidi B, 2016, vol. 253, no. 7, p. 1331.

    Article  ADS  Google Scholar 

  8. Bobrovnitskii, Yu.I. and Tomilina, T.M., Acoust. Phys., 2018, vol. 64, no. 5, p. 519.

    Article  ADS  Google Scholar 

  9. Sidorov, L.N., Yurovskaya, M.A., Borshchevskii, A.Ya., et al., Fullereny. Uchebnoe posobie (Fullerenes: Textbook), Moscow: Ekzamen, 2005.

  10. Blank, V.D., Levin, V.M., Prokhorov, V.M., et al., J. Exp. Theor. Phys., 1998, vol. 87, p. 741.

    Article  ADS  Google Scholar 

  11. Kobelev, N.P., Moravskii, A.P., Soifer, Ya.M., et al., Fiz. Tverd. Tela, 1994, vol. 36, no. 9, p. 2732.

    Google Scholar 

  12. Rudenko, O.V., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 10, p. 1215.

    Article  Google Scholar 

  13. Erofeev, V.I., Gerasimov, S.I., Kazhaev, V.V., and Pavlov, I.S., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 10, p. 1203.

    Article  Google Scholar 

  14. Erofeev, V.I., Leonteva, A.V., and Malhanov, A.O., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 5, p. 520.

    Article  MathSciNet  Google Scholar 

  15. Chunyu Li and Tsu-Wei Chou, Int. J. Solids Struct., 2003, vol. 40, no. 10, p. 2487.

    Article  Google Scholar 

  16. Pavlov, I.S. and Potapov, A.I., Dokl. Phys., 2008, vol. 53, no. 7, p. 408.

    Article  ADS  Google Scholar 

  17. Pavlov, I.S., Potapov, A.I., and Maugin, G.A., Int. J. Solids Struct., 2006, vol. 43, no. 20, p. 6194.

    Article  Google Scholar 

  18. Erofeev, V.I. and Pavlov, I.S., Strukturnoe modelirovanie metamaterialov (Structural Modeling of Metamaterials), Nizhny Novgorod: Inst. Prikl. Fiz. Ross. Akad. Nauk, 2019.

  19. Vasiliev, A.A. and Pavlov, I.S., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 447, 012079.

  20. Spadoni, A. and Ruzzene, M., J. Mech. Phys. Solids, 2012, vol. 60, p. 156.

    Article  ADS  Google Scholar 

  21. Konek, D.A., Voitsekhovski, K.V., Pleskachevskii, Yu.M., and Shil’ko, S.V., Mekh. Kompoz. Mater. Konstr., 2004, vol. 10, no. 1, p. 35.

    Google Scholar 

  22. Vasiliev, A.A., Miroshnichenko, A.E., and Dmitriev, S.V., Eur. J. Mech. A, 2014, vol. 46, p. 96.

    Article  Google Scholar 

  23. Altenbach, H., Maugin, G.A., and Erofeev, V.I., Mechanics of Generalized Continua, Heidelberg: Springer, 2011.

    Book  Google Scholar 

  24. Nowacki, W., Teoria sprężystości (Elasticity Theory), Warsaw: PWN, 1970.

  25. Erofeev, V.I., Pavlov, I.S., and Vikulin, A.V., Mater. Phys. Mech., 2018, vol. 35, no. 1, p. 53.

    Google Scholar 

  26. Akhiezer, A.I., Bar’yakhtar, V.G., and Peletminskii, S.V., Spinovye volny (Spin Waves), Moscow: Nauka, 1967.

  27. Lee, J.D. and Eringen, A.C., J. Chem. Phys., 1971, vol. 54, no. 12, p. 5027.

    Article  ADS  Google Scholar 

  28. Yildirim, T. and Harris, A.B., Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, 7878.

    Article  ADS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state assignment of the Mechanical Engineering Research Institute, Russian Academy of Sciences, for fundamental scientific research for 2021 -2023, on topic no. 0030-2021-0025 and supported by the Russian Foundation for Basic Research, project nos. 19-08-00965-a and 18-29-10073-MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Pavlov.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, I.S., Erofeev, V.I., Muravieva, A.V. et al. Estimating the Velocity of Rotational Waves in the Simple Cubic Lattice of a Fullerite Crystal. Bull. Russ. Acad. Sci. Phys. 85, 686–690 (2021). https://doi.org/10.3103/S1062873821060162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821060162

Navigation