Skip to main content

Study of Local Fields of Dendrite Nanostructures in Hot Spots Formed on SERS-Active Substrates Produced via Template-Assisted Synthesis

Abstract—

A procedure is proposed for template-assisted synthesis on track membranes using iodide electrolyte to produce substrates with dendritic nanostructures formed on the tips of silver nanowires. The distribution of the electromagnetic field near a silver nanorhombus irradiated with visible laser radiation is modeled because the dendrite branches are rhombus-shaped nanoparticles. Calculations indicate considerable enhancement of the local electric fields near the sharp tops of the nanorhombus.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Radziuk, D. and Moehwalda, H., Phys. Chem. Chem. Phys., 2010, vol. 17, p. 21072.

    Article  Google Scholar 

  2. 2

    Etchegoina, P.G. and Le Ru, E.C., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6079.

    Article  Google Scholar 

  3. 3

    Kuttner, C., Plasmonics in sensing: From colorimetry to SERS analytics, in Plasmonics, Gric, T., Ed., IntechOpen, 2018.

    Google Scholar 

  4. 4

    Naumov, A.V., Gorshelev, A.A., Gladush, M.G., et al., Nano Lett., 2018, vol. 18, p. 6129.

    ADS  Article  Google Scholar 

  5. 5

    Gladush, M.G., Anikushina, T.A., Gorshelev, A.A., et al., J. Exp. Theor. Phys., 2019, vol. 128, no. 5, p. 655.

    Article  Google Scholar 

  6. 6

    Eskova, A.E., Arzhanov, A.I., Magaryan, K.A., et al., Bull. Russ. Acad. Sci.: Phys., 2020. vol. 84, no. 1, p. 40.

    Article  Google Scholar 

  7. 7

    Eskova, A.E., Arzhanov, A.I., Magaryan, K.A., et al., EPJ Web Conf., 2019, vol. 220, 03014.

  8. 8

    Ostroukhov, N., Sleptsov, V., Tyanginskii, A., et al., Fotonika, 2011, no. 5, p. 38.

  9. 9

    Karpov, S., Fotonika, 2012, no. 3, p. 52.

  10. 10

    Kozhina, E.P., Bedin, S.A., Razumovskaya, I.V., et al., J. Phys.: Conf. Ser., 2019, vol. 1283, 012009.

    Google Scholar 

  11. 11

    Ermushev, A.V., Mchedlishvili, B.V., Oleinikov, V.A., et al., Quantum Electron., 1993, vol. 23, p. 435.

    ADS  Article  Google Scholar 

  12. 12

    Hu, J., Wang, Z., and Li, J., Sensors, 2007, no. 7, p. 3299.

  13. 13

    Kottmann, J.P., Martin, O.J.F., Smith, D.R., et al., Opt. Express, 2000, vol. 6, no. 11, p. 213.

    ADS  Article  Google Scholar 

  14. 14

    Simeone, D., Esposito, M., Scuderi, M., et al., ACS Photonics, 2018, vol. 5, no. 8, p. 3399.

    Google Scholar 

  15. 15

    Merlen, A. and Lagugné-Labarthet, F., Appl. Spectrosc., 2014, vol. 68, no. 12, p. 1307.

    ADS  Article  Google Scholar 

  16. 16

    16. Orságová Králová, Z., Oriňak, A., Oriňaková, R., et al., J. Biomed. Opt., 2018, vol. 23, no. 7, 075002.

    ADS  Google Scholar 

  17. 17

    Ye, Y., Chen, C., Hua, H., et al., Cell Rep. Phys. Sci., 2020, vol. 1, no. 3, 100031.

    Article  Google Scholar 

  18. 18

    Yakimchuk, D.V., Kaniukov, E.Yu., Lepeshov, S., et al., J. Appl. Phys., 2019, vol. 126, no. 23, 233105.

    ADS  Article  Google Scholar 

  19. 19

    Rafailović, L.D., Gammer, C., Srajer, J., et al., RCS Adv., 2016, vol. 6, no. 40, p. 33348.

    Google Scholar 

  20. 20

    Gutés, A., Carraro, C., and Maboudian, R., J. Am. Chem. Soc., 2010, vol. 132, no. 5, p. 1476.

    Article  Google Scholar 

  21. 21

    Cheng, Z.-Q., Li, Z.-W., Xu, J.-H., et al., Nanoscale Res. Lett., 2019, vol. 14, 89.

    ADS  Article  Google Scholar 

  22. 22

    Bedin, S.A., Rybalko, O.G., Polyakov, N.B., et al., Inorg. Mater.: Appl. Res., 2010, vol. 1, p. 359.

    Article  Google Scholar 

  23. 23

    Burkat, G.K., Elektroosazhdenie dragotsennykh metallov (Electrodeposition of Precious Metals), St. Petersburg: Politekhnika, 2009.

  24. 24

    Fourcade, F. and Tzedakis, T., J. Electroanal. Chem. Interfacial Electrochem., 2000, vol. 493, p. 20.

    Article  Google Scholar 

  25. 25

    Tarakanov, V.P., EPJ Web Conf., 2017, vol. 149, 04024.

  26. 26

    Johnson, P.B. and Christy, R.W., Phys. Rev. B: Solid State, 1972, vol. 6, p. 4370.

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurements were made using equipment at the shared resource center of the Russian Academy of Sciences’ Center “Crystallography and Photonics.”

Funding

This work was performed as part of a State Task for Moscow State Pedagogical University on the topic “Physics of Nanostructured Materials: Fundamental Research and Applications in Materials Science, Nanotechnology, and Photonics.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. P. Kozhina.

Additional information

Translated by K. Gumerov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozhina, E.P., Andreev, S.N., Tarakanov, V.P. et al. Study of Local Fields of Dendrite Nanostructures in Hot Spots Formed on SERS-Active Substrates Produced via Template-Assisted Synthesis. Bull. Russ. Acad. Sci. Phys. 84, 1465–1468 (2020). https://doi.org/10.3103/S1062873820120205

Download citation