Studying the Effect of Brownian Motion on the Mössbauer Spectra of Nanoparticles in a Medium Simulating Cell Cytoplasm

Abstract

The nonstandard nature of intracellular motion is associated with a considerable content of macromolecules and is largely due to the phenomenon of abnormal diffusion. Features of the motion of nanoparticles in concentrated protein solutions that simulate cytoplasm are studied on a nanosecond time scale by means of Mössbauer spectroscopy. A comparative analysis is performed of the nano- and macro-viscosity of the media.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Goins, A.B., Sanabria, H., and Waxham, M.N., Biophys. J., 2008, vol. 95, no. 11, p. 5362.

    ADS  Article  Google Scholar 

  2. 2

    Einstein, A., Ann. Phys. (N. Y., NY, U. S.), 1905, vol. 17, p. 549.

    ADS  Google Scholar 

  3. 3

    Smoluchowski, M., Ann. Phys. (N. Y., NY, U. S.), 1906, vol. 21, p. 756.

    Google Scholar 

  4. 4

    Hofling, F. and Franosch, T., Rep. Prog. Phys., 2013, vol. 76, 046602.

    ADS  Article  Google Scholar 

  5. 5

    Dix, J.A. and Verkman, A.S., Ann. Rev. Biophys., 2008, vol. 37, p. 247.

    Article  Google Scholar 

  6. 6

    Ellis, R.J. and Minton, A.P., Nature, 2003, vol. 425, no. 6953, p. 27.

    ADS  Article  Google Scholar 

  7. 7

    Di Rienzo, C., Piazza, V., Gratton, E., et al., Nat. Commun., 2014, vol. 5, no. 1, p. 1.

    Article  Google Scholar 

  8. 8

    Elcock, A.H., Curr. Opin. Struct. Biol., 2010, vol. 20, no. 2, p. 196.

    Article  Google Scholar 

  9. 9

    Minton, A.P., J. Cell Sci., 2006, vol. 119, no. 14, p. 2863.

    Article  Google Scholar 

  10. 10

    Qin, S. and Zhou, H.X., Biophys. J., 2009, vol. 97, no. 1, p. 12.

    ADS  Article  Google Scholar 

  11. 11

    Roosen-Runge, F., Hennig, M., Zhang, F., et al., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 29, 11815.

    ADS  Article  Google Scholar 

  12. 12

    Novak, I.L., Kraikivski, P., Slepchenko, B.M., et al., Biophys. J., 2009, vol. 97, no. 3, p. 758.

    ADS  Article  Google Scholar 

  13. 13

    Rivas, G. and Minton, A.P., Trends Biochem. Sci., 2016, vol. 41, no. 11, p. 970.

    Article  Google Scholar 

  14. 14

    Rashid, R., Chee, S.M., Raghunath, M., and Wohland, T., Phys. Biol., 2015, vol. 12, no. 3, 034001.

    ADS  Article  Google Scholar 

  15. 15

    Weiss, M., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, vol. 88, no. 1, 010101.

    ADS  Article  Google Scholar 

  16. 16

    Ernst, D., Hellmann, M., Köhler, J., and Weiss, M., Soft Matter, 2012, vol. 8, no. 18, p. 4886.

    ADS  Article  Google Scholar 

  17. 17

    Guigas, G., Kalla, C., and Weiss, M., Biophys. J., 2007, vol. 93, no. 1, p. 316.

    ADS  Article  Google Scholar 

  18. 18

    Norregaard, K., Metzler, R., Ritter, C.M., et al., Chem. Rev., 2017, vol. 117, no. 5, p. 4342.

    Article  Google Scholar 

  19. 19

    Chuev, M.A., Cherepanov, V.M., and Polikarpov, M.A., JETP Lett., 2018, vol. 108, no. 1, p. 59.

    ADS  Article  Google Scholar 

  20. 20

    Gabbasov, R., Yurenya, A., Nikitin, A., et al., J. Magn. Magn. Mater., 2019, vol. 475, p. 146.

    ADS  Article  Google Scholar 

  21. 21

    Landers, J., Salamon, S., Remmer, H., et al., Nano Lett., 2016, vol. 16, no. 2, p. 1150.

    ADS  Article  Google Scholar 

  22. 22

    Keller, H. and Kundig, W., Solid State Commun., 1975, vol. 16, no. 2, p. 253.

    ADS  Article  Google Scholar 

  23. 23

    Cherepanov, V.M., Gabbasov, R.R., Yurenya, A.Yu., et al., Crystallogr. Rep., 2020, vol. 65, no. 3, p. 398.

    ADS  Article  Google Scholar 

  24. 24

    Kuimova, M.K., Yahioglu, G., Levitt, J.A., et al., J. Am. Chem. Soc., 2008, vol. 130, no. 21, p. 6672.

    Article  Google Scholar 

  25. 25

    Garanina, A.S., Naumenko, V.A., Nikitin, A.A., et al., Nanomedicine, 2020, vol. 25, 102171.

    Article  Google Scholar 

  26. 26

    Priev, A., Almagor, A., Yedgar, S., et al., Biochemistry, 1996, vol. 35, no. 7, p. 2061.

    Article  Google Scholar 

  27. 27

    Chuev, M.A., J. Magn. Magn. Mater., 2019, vol. 470, p. 12.

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research as part of comprehensive scientific project no. 17-00-00444 (K). The samples were prepared as part of subproject no. 17-00-00442. The Mössbauer studies were performed as part of subproject no. 17-00-00438. Our mathematical analysis was performed as part of subproject no. 17-00-00443, and a State Task for the Valiev Institute of Physics and Technology from the RF Ministry of Science and Hihger Education, topic no. 0066-2019-0004.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Yurenya.

Additional information

Translated by P. Kuchina

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yurenya, A.Y., Nikitin, A.A., Gabbasov, R.R. et al. Studying the Effect of Brownian Motion on the Mössbauer Spectra of Nanoparticles in a Medium Simulating Cell Cytoplasm. Bull. Russ. Acad. Sci. Phys. 84, 1399–1402 (2020). https://doi.org/10.3103/S1062873820110295

Download citation