Skip to main content

Masses and Pairing Energies of Deformed Nuclei

Abstract

A description is considered of the mass surfaces and pairing energies of a number of even–even and odd deformed nuclei with mass numbers in the range of 150 to 190 using polynomials no higher than the second order. An approach in which pairing energy depends on the mass of one odd nucleus is applied. It is shown that the main features of the behavior of pairing energies are preserved in this approach.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Bohr, A. and Mottelson, B.R., Nuclear Structure, New York: Benjamin, 1969, vol. 1.

    MATH  Google Scholar 

  2. 2

    Solov’ev, V.G., Teoriya slozhnykh yader (Theory of Complex Nuclei), Moscow: Nauka, 1971.

  3. 3

    Eisenberg, J.M. and Greiner, W., Microscopic Theory of the Nucleus, Amsterdam: North-Holland, 1972.

    Google Scholar 

  4. 4

    Madland, D.G. and Nix, J.R., Nucl. Phys. A, 1988, vol. 476, p. 1.

    ADS  Article  Google Scholar 

  5. 5

    Vlasnikov, A.K., Zippa, A.I., and Mikhajlov, V.M., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, p. 1184.

    Article  Google Scholar 

  6. 6

    Vlasnikov, A.K., Zippa, A.I., and Mikhajlov, V.M., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 8, p. 919.

    Article  Google Scholar 

  7. 7

    Vlasnikov, A.K., Zippa, A.I., and Mikhajlov, V.M., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 905.

    Article  Google Scholar 

  8. 8

    Wang, M., Audi, G., Kondev, F.G., et al., Chin. Phys. C, 2017, vol. 41, no. 3, 030003.

    ADS  Article  Google Scholar 

  9. 9

    Lunney, D., Pearson, J.M., and Thibault, C., Rev. Mod. Phys., 2003, vol. 75, p. 1021.

    ADS  Article  Google Scholar 

  10. 10

    Garvey, G.T. and Kelson, I., Phys. Rev. Lett., 1966, vol. 16, p. 197.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Vlasnikov.

Additional information

Translated by E. Baldina

Appendices

Parameters of Second Order Surfaces for Describing Energies of Even–Even Nuclei (Even N and Z)

Let us determine functions \(e\left( {s,t} \right)\) and \(e\left( {2,0} \right)\):

$$\begin{gathered} e\left( {s,t} \right) \equiv E\left( {N + s,Z + t} \right) + E\left( {N - s,Z - t} \right) \\ = 2\mathcal{E}\left( {N,Z} \right) + 2\sum\limits_{\begin{subarray}{l} i,k \geqslant 0 \\ i + k = 2\mu \\ \mu = 1;2;3; \ldots \end{subarray}} {{{d}_{{in,kp}}}\frac{{{{s}^{i}}{{t}^{k}}}}{{i!k!}}} {\kern 1pt} {\kern 1pt} ; \\ \end{gathered} $$
$$\begin{gathered} o\left( {s,t} \right) \equiv E\left( {N + s,Z + t} \right) - E\left( {N - s,Z - t} \right) \\ = 2\sum\limits_{\begin{subarray}{l} i,k \geqslant 0 \\ i + k = 2\nu + 1 \\ \nu = 1;2;3; \ldots \end{subarray}} {{{d}_{{in,kp}}}\frac{{{{s}^{i}}{{t}^{k}}}}{{i!k!}}{\kern 1pt} {\kern 1pt} } . \\ \end{gathered} $$

s-approximation:

$$\begin{gathered} E\left( {N,Z} \right) - \mathcal{E}\left( {N,Z} \right) \\ = E\left( {N,Z} \right) - \frac{1}{6}\left[ {4e\left( {2,0} \right) - e\left( {4,0} \right)} \right]; \\ \end{gathered} $$
$${{d}_{{1n}}} = {{o\left( {2,0} \right)} \mathord{\left/ {\vphantom {{o\left( {2,0} \right)} 4}} \right. \kern-0em} 4};\,\,\,\,{{d}_{{2n}}} = \frac{1}{{12}}\left[ { - e\left( {2,0} \right) + e\left( {4,0} \right)} \right].$$

t-approximation:

$$\begin{gathered} E\left( {N,Z} \right) - \mathcal{E}\left( {N,Z} \right) \\ = E\left( {N,Z} \right) - \frac{1}{6}\left[ {4e\left( {0,2} \right) - e\left( {0,4} \right)} \right]. \\ \end{gathered} $$
$${{d}_{{1p}}} = {{o\left( {0,2} \right)} \mathord{\left/ {\vphantom {{o\left( {0,2} \right)} 4}} \right. \kern-0em} 4};\,\,\,\,{{d}_{{2p}}} = \frac{1}{{12}}\left[ { - e\left( {0,2} \right) + e\left( {0,4} \right)} \right].$$

st-approximation:

$$\begin{gathered} E\left( {N,Z} \right) - \mathcal{E}\left( {N,Z} \right) \\ = E\left( {N,Z} \right) - \frac{1}{6}\left[ {4e\left( {2, - 2} \right) - e\left( {4, - 4} \right)} \right]. \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{1n}}} = \frac{1}{8}\left[ {o\left( {2, - 2} \right) + o\left( {4, - 2} \right) - o\left( {2, - 4} \right)} \right]; \\ {{d}_{{1p}}} = \frac{1}{8}\left[ { - o\left( {2, - 2} \right) + o\left( {4, - 2} \right) - o\left( {2, - 4} \right)} \right]. \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{2n}}} = \frac{1}{{24}}\left[ {e\left( {4, - 4} \right) - \frac{5}{2}e\left( {2, - 2} \right)} \right. \\ \left. { + \,\,\frac{3}{2}e\left( {2,2} \right) + e\left( {4, - 2} \right) - e\left( {2, - 4} \right)} \right]. \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{2p}}} = {{d}_{{2n}}} - \frac{1}{{12}}\left[ {e\left( {4, - 2} \right) - e\left( {2,4} \right)} \right]; \\ {{d}_{{2n}}} + {{d}_{{2p}}} - 2{{d}_{{1n1p}}} = \frac{1}{2}\left[ {e\left( {4, - 4} \right) - e\left( {2, - 2} \right)} \right]. \\ \end{gathered} $$

Parameters of Second Order SUrfaces for Describing Energies of Odd Nuclei

Neutron Odd Nuclei

s-approximation:

$${{d}_{{1n}}} = {{o\left( {1,0} \right)} \mathord{\left/ {\vphantom {{o\left( {1,0} \right)} 2}} \right. \kern-0em} 2};\,\,\,\,{{d}_{{2n}}} = \frac{1}{8}\left[ {e\left( {3,0} \right) - e\left( {1,0} \right)} \right].$$

(st)n-approximation:

$$\begin{gathered} {{d}_{{1n}}} = \frac{1}{4}\left[ {o\left( {3, - 2} \right) - o\left( {1, - 4} \right)} \right]; \\ {{d}_{{2n}}} = \frac{1}{8}\left[ {e\left( {1,2} \right) + e\left( {3, - 2} \right) - 2e\left( {1, - 2} \right)} \right]; \\ \end{gathered} $$
$${{d}_{{1n}}} - {{d}_{{1p}}} = \frac{1}{8}\left[ {o\left( {3, - 2} \right) + o\left( {1, - 2} \right)} \right].$$

Here, \(e\left( {s,t} \right)\) and \(o\left( {s,t} \right)\) are functions\(E\left( {{{N}_{{{\text{odd}}}}} + s,Z + t} \right)\), where \({{N}_{{{\text{odd}}}}}\) is an odd number and Z is an even number.

Proton Odd Nuclei

t-approximation:

$${{d}_{{1p}}} = {{o\left( {0,1} \right)} \mathord{\left/ {\vphantom {{o\left( {0,1} \right)} 2}} \right. \kern-0em} 2};\,\,\,\,{{d}_{{2p}}} = \frac{1}{8}\left[ {e\left( {0,3} \right) - e\left( {0,1} \right)} \right].$$

(st)p-approximation:

$$\begin{gathered} {{d}_{{1p}}} = \frac{1}{4}\left[ {o\left( { - 2,3} \right) - o\left( { - 2,1} \right)} \right]; \\ {{d}_{{2p}}} = \frac{1}{8}\left[ {e\left( {2,1} \right) + e\left( { - 2,3} \right) - 2e\left( { - 2,1} \right)} \right]; \\ {{d}_{{1n}}} - {{d}_{{1p}}} = - \frac{1}{8}\left[ {o\left( { - 2,3} \right) + o\left( { - 2,1} \right)} \right]. \\ \end{gathered} $$

Here, \(e\left( {s,t} \right)\) and \(o\left( {s,t} \right)\) are functions \(E\left( {N + s,{{Z}_{{{\text{odd}}}}} + t} \right)\), where \(N\) is an even number and Zodd is an odd number.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlasnikov, A.K., Zippa, A.I. & Mikhajlov, V.M. Masses and Pairing Energies of Deformed Nuclei. Bull. Russ. Acad. Sci. Phys. 84, 1309–1313 (2020). https://doi.org/10.3103/S1062873820100287

Download citation