Skip to main content

Pseudorapidity Dependence of Multiplicity Fluctuations in a Model of Interacting Quark–Gluon Strings of Finite Rapidity Length

Abstract

The paper shows results obtained for event-by-event multiplicity fluctuations studied in terms of strongly intensive quantity in the Monte Carlo model of quark–gluon strings of finite pseudorapidity length. The effect of the string fusion on the fluctuation measure is presented as its dependence on the distance between the intervals of pseudorapidity in which multiplicity is determined. The results are in qualitative agreement with experimental data on Pb+Pb collisions by the ALICE experiment at the LHC.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Stephanov, M., Prog. Theor. Phys., 2004, vol. 153, p. 139.

    Article  Google Scholar 

  2. 2

    Shuryak, E.V., Phys. Lett. B, 1978, vol. 78, p. 150.

    ADS  Article  Google Scholar 

  3. 3

    Alt, C. et al. (NA49 Collab.), Phys. Rev. C: Nucl. Phys., 2008, vol. 77, 024903.

    ADS  Article  Google Scholar 

  4. 4

    Kumar, L. et al. (STAR Collab.), J. Phys. G: Nucl. Part. Phys., 2011, vol. 38, 124145.

    ADS  Article  Google Scholar 

  5. 5

    Pawlowski, J.M., AIP Conf. Proc., 2011, vol. 1343, p. 75.

    ADS  Article  Google Scholar 

  6. 6

    Bialas, A. and Hwa, R.C., Phys. Lett. B, 1991, vol. 253, p. 436.

    ADS  Article  Google Scholar 

  7. 7

    Luo, X., EPJ Web Conf., 2017, vol. 141, 04001.

  8. 8

    Vovchenko, V., Anchishkin, D.V., and Gorenstein, M.I., J. Phys. A, 2015, vol. 48, 305001.

    MathSciNet  Article  Google Scholar 

  9. 9

    Alt, C. et al. (NA49 Collab.), Phys. Rev. C: Nucl. Phys., 2007, vol. 75, 064904.

    ADS  Article  Google Scholar 

  10. 10

    Alt, C. et al. (NA49 Collab.), Phys. Rev. C: Nucl. Phys., 2008, vol. 78, 034914.

    ADS  Article  Google Scholar 

  11. 11

    Adamczyk, L. et al. (STAR Collab.), Phys. Rev. Lett., 2014, vol. 112, 032302.

    ADS  Article  Google Scholar 

  12. 12

    Anticic, T. et al. (NA49 Collab.), Phys. Rev. C: Nucl. Phys., 2004, vol. 70, 034902.

    ADS  Article  Google Scholar 

  13. 13

    Gorenstein, M.I. and Gaździcki, M., Phys. Rev. C: Nucl. Phys., 2011, vol. 84, 014904.

    ADS  Article  Google Scholar 

  14. 14

    Gazdzicki, M., Gorenstein, M.I., and Mackowiak-Pawlowska, M., Phys. Rev. C: Nucl. Phys., 2013, vol. 88, 024907.

    ADS  Article  Google Scholar 

  15. 15

    Cleymans, J. and Becattini, F., in Proc. 4th Int. Workshop on Critical Point and Onset of Deconfinement (PoS(CPOD07)), Darmstadt, 2008, vol. 47, 012.

  16. 16

    Andronov, E., Acta Phys. Pol., B, 2017, vol. 10, p. 449.

    Google Scholar 

  17. 17

    Prokhorova, D., EPJ Web Conf., 2019, vol. 204, 07013.

  18. 18

    Sputowska, I., Proceedings, 2019, vol. 10, no. 1, p. 14.

    Article  Google Scholar 

  19. 19

    Andronov, E.V., Theor. Math. Phys., 2015, vol. 185, p. 1383.

    Article  Google Scholar 

  20. 20

    Andronov, E. and Vechernin, V., Eur. Phys. J. A, 2019, vol. 55, p. 14.

    ADS  Article  Google Scholar 

  21. 21

    Rohrmoser, M. and Broniowski, W., Phys. Rev. C, 2019, vol. 99, 024904.

    ADS  Article  Google Scholar 

  22. 22

    Broniowski, W. and Bożek, P., Phys. Rev. C, 2016, vol. 93, 064910.

    ADS  Article  Google Scholar 

  23. 23

    Werner, K., Phys. Rep., 1993, vol. 232, p. 87.

    ADS  Article  Google Scholar 

  24. 24

    Capella, A, Sukhatme, U., Tan, C.I., et al., Phys. Rep., 1994, vol. 236, p. 225.

    ADS  Article  Google Scholar 

  25. 25

    Artru, X. and Mennessier, G., Nucl. Phys. B, 1974, vol. 70, p. 93.

    ADS  Article  Google Scholar 

  26. 26

    Artru, X., Phys. Rep., 1983, vol. 97, p. 147.

    ADS  Article  Google Scholar 

  27. 27

    Kaidalov, A.B., Phys. Lett. B,1982, vol. 116, p. 459.

    ADS  Article  Google Scholar 

  28. 28

    Kaidalov, A.B. and Ter-Martirosyan, K.A., Phys. Lett. B, 1982, vol. 117, p. 247.

    ADS  Article  Google Scholar 

  29. 29

    Abramosvkii, V.A. and Kancheli, V.O., JETP Lett., 1980, vol. 32, p. 478.

    ADS  Google Scholar 

  30. 30

    Amelin, N.S., Armesto, N., Braun, M.A., et al., Phys. Rev. Lett., 1994, vol. 73, p. 2813.

    ADS  Article  Google Scholar 

  31. 31

    Adamczyk, L. et al. (STAR Collab.), Phys. Rev. Lett., 2009, vol. 103, 172301.

    ADS  Article  Google Scholar 

  32. 32

    Seryakov, A, EPJ Web Conf., 2016, vol. 126, 04044.

  33. 33

    Altsybeev, I., Feofilov, G.A., and Kochebina, O., in Proc. XXII International Baldin Seminar on High Energy Physics Problems (PoS (Baldin ISHEPP XXII), Dubna, 2014, vol. 225, p. 67.

  34. 34

    Prokhorova, D., KnE Energy, 2018, vol. 3, p. 217.

    Article  Google Scholar 

  35. 35

    Vechernin, V.V. and Kolevatov, R.S., Vestn. St. Petersburg. Gos. Univ., Ser. 4, 2004, no. 4, p. 11.

  36. 36

    ALICE Collab., J. Phys. G: Nucl. Part. Phys., 2006, vol. 32, p. 1295.

    Article  Google Scholar 

  37. 37

    Vechernin, V., Nucl. Phys. A, 2015, vol. 939, p. 21.

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-32-01055 mol_a.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. S. Prokhorova.

Additional information

Translated by N. Semenova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prokhorova, D.S., Kovalenko, V.N. Pseudorapidity Dependence of Multiplicity Fluctuations in a Model of Interacting Quark–Gluon Strings of Finite Rapidity Length. Bull. Russ. Acad. Sci. Phys. 84, 1261–1265 (2020). https://doi.org/10.3103/S1062873820100202

Download citation