Skip to main content

Secondary Nuclei from Peripheral and Ultraperipheral Collisions of Relativistic Heavy Ions

Abstract

The production of heavy secondary nuclei in 197Au–197Au collisions at NICA and in 129Xe–129Xe and 208Pb–208Pb collisions at the LHC is calculated by means of Glauber Monte Carlo model connected with nuclear de-excitation models from Geant4 toolkit. The production of secondary nuclei in ultraperipheral heavy-ion collisions is additionally simulated with the RELDIS model, which predicts the dominance of neutron emission in the electromagnetic interactions of the considered nuclei. As found, Te, I and Au, Hg, Tl nuclei are frequently produced, respectively, in decays of 129Xe and 208Pb excited electromagnetically at the LHC. In contrast, mostly gold isotopes are produced in ultraperipheral collisions at NICA. A possible impact of secondary nuclei on collider components is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Blumenfeld, Y., Nilsson, T., and Van Duppen, P., Phys. Scr., T, 2013, vol. 152, 014023.

    ADS  Article  Google Scholar 

  2. 2

    Gade, A., Phys. Scr., T, 2013, vol. 152, 014004.

    ADS  Article  Google Scholar 

  3. 3

    Bonaccorso, A., Phys. Scr., T, 2013, vol. 152, 014019.

    ADS  Article  Google Scholar 

  4. 4

    Stachel, J., Andronic, A., Braun-Munzinger, P., et al., J. Phys.: Conf. Ser., 2014, vol. 509, 012019.

    Google Scholar 

  5. 5

    Appelshauser, H., Bachler, J., Bailey, S.J., et al., Eur. Phys. J. A, 1998, vol. 2, p. 383.

    ADS  Article  Google Scholar 

  6. 6

    Scheidenberger, C., Pshenichnov, I.A., Summerer, K., et al., Phys. Rev. C: Nucl. Phys., 2004, vol. 70, 014902.

    ADS  Article  Google Scholar 

  7. 7

    Uggerhoj, U.I., Pshenichnov, I.A., Scheidenberger, C., et al., Phys. Rev. C: Nucl. Phys., 2005, vol. 72, 057901.

    ADS  Article  Google Scholar 

  8. 8

    Alver, D., Back, B.B., Baker, M.D., et al., Phys. Rev. C, 2016, vol. 94, 024903.

    ADS  Article  Google Scholar 

  9. 9

    Cherry, M.L., Dabrowska, A., Deines-Jones, P., et al., Phys. Rev. C: Nucl. Phys., 1995, vol. 52, p. 2652.

    ADS  Article  Google Scholar 

  10. 10

    Cherry, M.L., Dabrowska, A., Deines-Jones, P., et al., Acta Phys. Pol., B, 1998, vol. 29, p. 2155.

    ADS  Google Scholar 

  11. 11

    Adamovich, M.I., Aggarwal, M.M., Alexandrov, Y.A., et al., Eur. Phys. J. A, 1999, vol. 5, p. 429.

    ADS  Article  Google Scholar 

  12. 12

    Zaitsev, A.A. and Zarubin, P.I., Phys. At. Nucl., 2018, vol. 81, p. 1237.

    Article  Google Scholar 

  13. 13

    Geer, L.Y., Klarmann, J., Nilsen, B.S., et al., Phys. Rev. C: Nucl. Phys., 1995, vol. 52, p. 334.

    ADS  Article  Google Scholar 

  14. 14

    Dekhissi, H., Giacomelli, G., Giorgini, M., et al., Nucl. Phys. A, 2000, vol. 662, p. 207.

    ADS  Article  Google Scholar 

  15. 15

    Adler, S.S., Afanasiev, S., Aidala, C., et al., Phys. Rev. C: Nucl. Phys., 2005, vol. 71, 034908.

    ADS  Article  Google Scholar 

  16. 16

    Oppedisano, C., Arnaldi, R., Chiavassa, E., et al., Nucl. Phys. A., vol. 197, p. 206.

  17. 17

    Pshenichnov, I.A., Fiz. Elem. Chastits At. Yadra, 2011, vol. 42, p. 215.

    Google Scholar 

  18. 18

    Golubeva, M., Guber, F.F., Karavicheva, T.L., et al., Phys. Rev. C: Nucl. Phys., 2005, vol. 71, 024905.

    ADS  Article  Google Scholar 

  19. 19

    Abelev, B., Adam, J., Adamova, D., et al., Phys. Rev. Lett., 2012, vol. 109, 252302.

    ADS  Article  Google Scholar 

  20. 20

    Adam, J., Adamova, D., Aggarwal, M.M., et al., Phys. Rev. Lett., 2016, vol. 116, 132302.

    ADS  Article  Google Scholar 

  21. 21

    Andronic, A., Barret, V., Basrak, Z., et al., Phys. Lett. B, 2005, vol. 612, p. 173.

    ADS  Article  Google Scholar 

  22. 22

    Bruce, R., Bocian, D., Gilardoni, S., et al., Phys. Rev. Spec. Top.—Accel. Beams, 2009, vol. 12, 071002.

    ADS  Article  Google Scholar 

  23. 23

    Hermes, P.D., Bruce, R., Jowett, J.M., et al., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2016, vol. 819, p. 73.

    Google Scholar 

  24. 24

    Svetlichnyi, A.O. and Pshenichnov, I.A., in Proc. LXIX Int. Conf. “Nucleus 2019,” Dubna, 2019.

  25. 25

    Loizides, C., Kamin, J., and d’Enterria, D., Phys. Rev. C, 2018, vol. 97, 054910.

    ADS  Article  Google Scholar 

  26. 26

    Allison, J., Amako, K., Apostolakis, J., et al., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2016, vol. 835, p. 186.

    Google Scholar 

  27. 27

    Bondorf, J.P., Botvina, A.S., Iljinov, A.S., et al., Phys. Rep., 1995, vol. 257, p. 133.

    ADS  Article  Google Scholar 

  28. 28

    Ericson, T., Adv. Phys., 1960, vol. 9, p. 425.

    ADS  Article  Google Scholar 

  29. 29

    Gaimard, J.-J. and Schmidt, K.-H., Nucl. Phys. A, 1991, vol. 531, p. 709.

    ADS  Article  Google Scholar 

  30. 30

    Botvina, A.S., Mishustin, I.N., Begemann-Blaich, M., et al., Nucl. Phys. A, 1995, vol. 584, p. 737.

    ADS  Article  Google Scholar 

  31. 31

    Svetlichnyi, A.O., in Proc. VIII Interinst. Young Scientists Conf. “Elementary Particle Physics and Cosmology 2019,” Moscow, 2019.

  32. 32

    Ogawa, T., Sato, T., Hashimoto, S., et al., Phys. Rev. C, 2018, vol. 98, 024611.

    ADS  Article  Google Scholar 

  33. 33

    Paraipan, M. and Timoshenko, G.N., Phys. Part. Nucl. Lett., 2012, vol. 9, p. 643.

    Article  Google Scholar 

Download references

Funding

The work has been carried out with financial support of the Russian Foundation for Basic Research within the project 18-02-40035-mega.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Pshenichnov.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pshenichnov, I.A., Dmitrieva, U.A. & Svetlichnyi, A.O. Secondary Nuclei from Peripheral and Ultraperipheral Collisions of Relativistic Heavy Ions. Bull. Russ. Acad. Sci. Phys. 84, 1007–1011 (2020). https://doi.org/10.3103/S1062873820080249

Download citation