Skip to main content

Generation of High Power THz Radiation in ZnGeP2 upon Femtosecond Ti:Sapphire Laser Pumping


The possibility of generating high power terahertz radiation in a nonlinear crystal of zinc germanium phosphide (ZnGeP2) with pumping in a short-wavelength absorption shoulder of 0.67–2.5 μm is studied in detail. High power femtosecond Ti:Sapphire laser system operating at wavelengths of 800 and 950 nm are considered as a pump source. A peak terahertz radiation power of ~1 kW is obtained.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Humphreys, K., Loughran, J.P., Gradziel, M., et al., Proc. of the 26th IEEE Eng. Med. Biol. Soc., San Francisco, 2004, vol. 1, p. 1302.

  2. 2

    Hu, B.B. and Nuss, M.C., Opt. Lett., 1995, vol. 20, no. 16, p. 1716.

    ADS  Article  Google Scholar 

  3. 3

    Jackson, J.B., Mourou, M., Whitaker, J.F., et al., Opt. Commun., 2008, vol. 281, no. 4, p. 527.

    ADS  Article  Google Scholar 

  4. 4

    Shi, W. and Ding, Y.J., Appl. Phys. Lett., 2004, vol. 84, no. 10, p. 1635.

    ADS  Article  Google Scholar 

  5. 5

    Hoffmann, M.C. and Fülöp, J.A., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 8, 083001.

    ADS  Article  Google Scholar 

  6. 6

    Nikogosyan, D.N., Nonlinear Optical Crystals: A Complete Survey, New York: Springer, 2005.

    Google Scholar 

  7. 7

    Ketteridge, P., Budni, P., Lee, I., et al., Proc. Adv. Solid State Laser, San Francisco, 1996, OP8.

  8. 8

    Boyd, G.D., Bridges, T.J., Patel, C.K.N., and Buehler, E., Appl. Phys. Lett., 1972, vol. 21, no. 11, p. 553.

    ADS  Article  Google Scholar 

  9. 9

    Shi, W. and Ding, Y.J., Appl. Phys. Lett., 2003, vol. 83, no. 5, p. 848.

    ADS  Article  Google Scholar 

  10. 10

    Rowley, J.D., Pierce, J.K., Brant, A.T., et al., Opt. Lett., 2012, vol. 37, no. 5, p. 788.

    ADS  Article  Google Scholar 

  11. 11

    Rowley, J.D., Wahlstrand, J.K., Zawilski, K.T., et al., Opt. Express, 2012, vol. 20, no. 15, p. 16968.

    ADS  Article  Google Scholar 

  12. 12

    Piyathilaka, H.P., Sooriyagoda, R., Dewasurendra, V., et al., Opt. Express, 2019, vol. 27, no. 12, p. 16958.

    ADS  Article  Google Scholar 

  13. 13

    Bhar, G.C., Samanta, L.K., Ghosh, D.K., and Das, S., Sov. J. Quantum Electron., 1987, vol. 17, no. 7, p. 860.

    ADS  Article  Google Scholar 

  14. 14

    Andreev, Yu.M., Geiko, L.G., and Geiko, P.P., Russ. Phys. J., 2002, vol 45, no. 10, p. 1019.

    Article  Google Scholar 

  15. 15

    Zhong, K., Liu, C., Wang, M., et al., Opt. Mater. Express, 2017, vol. 7, no. 10, p. 3571.

    ADS  Article  Google Scholar 

  16. 16

    Kumbhakar, P., Kobayashi, T., and Bhar, G.C., Appl. Opt., 2004, vol. 43, no. 16, p. 3324.

    ADS  Google Scholar 

  17. 17

    Shen, Y.R., Nonlinear Infrared Generation, Topics in Applied Physics, vol. 16, New York: Springer, 1977.

    Book  Google Scholar 

  18. 18

    Creeden, D., McCarthy, J.C., Ketteridge, P.A., et al., IEEE J. Sel. Top. Quantum Electron., 2007, vol. 13, no. 3, p. 732.

    ADS  Article  Google Scholar 

Download references


This work was supported by the Russian Science Foundation, project no. 19-19-00241.

Author information



Corresponding author

Correspondence to D. M. Lubenko.

Additional information

Translated by A. Ivanov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lubenko, D.M., Losev, V.F., Ezhov, D.M. et al. Generation of High Power THz Radiation in ZnGeP2 upon Femtosecond Ti:Sapphire Laser Pumping. Bull. Russ. Acad. Sci. Phys. 84, 1039–1042 (2020).

Download citation