Skip to main content
Log in

Straintronics for Nanomedicine: Manipulating Biochemical Systems via Controllable Macromolecular Nanodeformation

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An analysis of the current strategy of the nano-magnetomechanical actuation of biochemical systems by utilizing the concept of straintronics for nanomedicine is performed. Such systems use magnetic nanoparticles controlled by nonheating low-frequency magnetic field. Theoretical models of targeted strain nanoactuation of biomolecular systems and recent experimental results are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bukharaev, A.A., Zvezdin, A.K., Pyatakov, A.P., et al., Phys.—Usp., 2018, vol. 61, no. 12, p. 1175.

    Article  ADS  Google Scholar 

  2. Noy, A., Handbook of Molecular Force Spectroscopy, New York: Springer, 2008.

    Book  Google Scholar 

  3. Yanagida, T. and Ishii, Y., Single Molecule Dynamics in Life Science, Weinheim: Wiley, 2009.

    Google Scholar 

  4. Oberhauser, A.F., Single-Molecule Studies of Proteins, New York: Springer, 2013.

    Book  Google Scholar 

  5. Hoffman, B.D., Grashoff, C., and Schwartz, M.A., Nature, 2019, vol. 475, no. 7356, p. 316.

    Article  Google Scholar 

  6. Hughes, S., McBain, S., Dobson, J., et al., J. R. Soc., Interface, 2008, vol. 5, no. 25, p. 855.

    Article  Google Scholar 

  7. Hoffman, B.D., Grashoff, C., and Schwartz, M.A., Nature, 2011, vol. 475, no. 7356, p. 316.

    Article  Google Scholar 

  8. Suresh, S., Acta Biomater., 2007, vol. 3, no. 4, p. 413.

    Article  MathSciNet  Google Scholar 

  9. Roca-Cusachs, P., Conte, V., and Trepat, X., Nat. Cell. Biol., 2017, vol. 19, no. 7, p. 742.

    Article  Google Scholar 

  10. Hughes, M.L. and Dougan, L., Rep. Prog. Phys., 2016, vol. 79, no. 7, 076601.

    Article  ADS  Google Scholar 

  11. Schmidt, S.W., Kersch, A., Beyer, M.K., et al., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 13, p. 5994.

    Article  Google Scholar 

  12. Orr, A.W., Helmke, B.P., Blackman, B.R., et al., Dev. Cell, 2006, vol. 10, no. 1, p. 11.

    Article  Google Scholar 

  13. Jaalouk, D.E. and Lammerding, J., Nat. Rev. Mol. Cell. Biol., 2009, vol. 10, no. 1, p. 63.

    Article  Google Scholar 

  14. Golovin, Yu.I., Gribanovsky, S.L., Golovin, D.Yu., et al., J. Controlled Release, 2015, vol. 219, p. 43.

    Article  Google Scholar 

  15. Golovin, Yu.I., Klyachko, N.L., Majouga, A.G., et al., J. Nanopart. Res., 2017, vol. 19, p. 63.

    Article  ADS  Google Scholar 

  16. Golovin, Yu.I., Zhigachev, A.O., Efremova, M.V., et al., Nanotechol. Russ., 2018, vol. 13, nos. 5–6, p. 295.

    Article  Google Scholar 

  17. Efremova, M.V., Veselov, M.M., Barulin, A.V., et al., ACS Nano, vol. 12, no. 12, p. 3190.

  18. Gahl, T.J. and Kunze, A., Front. Neurosci., 2018, vol. 12, p. 299.

    Article  Google Scholar 

  19. Kunjachan, S., Ehling, J., Storm, G., et al., Chem. Rev., 2015, vol. 115, no. 19, p. 10907.

    Article  Google Scholar 

  20. Sonali, M.K.V., Singh, R.P., Agrawal, P., et al., Nano-theranostics, 2018, vol. 2, no. 1, p. 70.

    Google Scholar 

  21. Alcaraz, J., Buscemi, L., Grabulosa, M., et al., Biophys. J., 2003, vol. 84, p. 2071.

    Article  ADS  Google Scholar 

  22. Evans, E., Heinrich, V., Ludwig, F., et al., Biophys. J., 2003, vol. 85, p. 2342.

    Article  Google Scholar 

  23. Ritort, F., J. Phys.: Condens. Matter, 2006, vol. 18, p. R531.

    ADS  Google Scholar 

  24. Golovin, Yu.I., Klyachko, N.L., Gribanovskii, S.L., et al., Tech. Phys. Lett., 2015, vol. 41, no. 5, p. 455.

    Article  ADS  Google Scholar 

  25. Le-Deygen, I.M., Vlasova, K.Yu., Kutsenok, E.O., et al., Nanomed.Nanotechnol., 2019, vol. 21.

    Google Scholar 

  26. Le, T.C., Zhai, J., Chiu, W.H., et al., Int. J. Nanomed., 2019, vol. 14, p. 6749.

    Article  Google Scholar 

  27. Golovin, Yu.I., Gribanovsky, S.L., Golovin, D.Yu., et al., J. Nanopart. Res., 2017, vol. 19, no. 2, p. 59.

    Article  ADS  Google Scholar 

  28. Klyachko, N.L., Sokolsky-Papkov, M., Pothayee, N., et al., Angew. Chem., Int. Ed., 2012, vol. 51, no. 48, p. 12016.

    Article  Google Scholar 

  29. Vlasova, K.Yu., Piroyan, A., Le-Deygen, I.M., et al, J. Colloid Interface Sci., 2019, vol. 552, p. 689.

    Article  ADS  Google Scholar 

  30. Hughes, S., El Haj, A.J., and Dobson, J., Med. Eng. Phys., 2005, vol. 27, no. 9, p. 754.

    Article  Google Scholar 

  31. Kim, D.H., Rozhkova, E.A., Ulasov, I.V., et al., Nat. Mater., 2010, vol. 9, no. 2, p. 165.

    Article  ADS  Google Scholar 

  32. Master, A.M., Williams, P.N., Pothayee, N., et al., Sci. Rep., 2016, vol. 6, 33560.

    ADS  Google Scholar 

  33. Xie, J., Chen, L., Varadan, V.K., et al., Nanotechnology, 2008, vol. 19, no. 10, 105101.

    Article  ADS  Google Scholar 

  34. Choi, Y.-K., Lee, D.H., Seo, Y.-K., et al., Appl. Biochem. Biotechnol., vol. 174, no. 4, p. 1233.

  35. Tay, A.K.P., Acute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels, Cham: Springer, 2018.

    Book  Google Scholar 

  36. Tay, A. and Di Carlo, D., Nano Lett., 2017, vol. 17, no. 2, p. 886.

    Article  ADS  Google Scholar 

  37. Falconieri, A., De Vincentiis, S., and Raffa, V., Nanomedicine, 2019, vol. 14, no. 9, p. 1073.

    Article  Google Scholar 

  38. Yuan, M., Wang, Y., and Qin, Y.-X., Nanomed. Nanotechnol., 2018, vol. 14, no. 4, p. 1337.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project nos. 17-42-680803, 17-54-33027, and 18-29-09154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Translated by. O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Zhigachev, A.O., Golovin, D.Y. et al. Straintronics for Nanomedicine: Manipulating Biochemical Systems via Controllable Macromolecular Nanodeformation. Bull. Russ. Acad. Sci. Phys. 84, 815–819 (2020). https://doi.org/10.3103/S1062873820070102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820070102

Navigation