Skip to main content
Log in

Development of Wide-Band Chaotic Oscillators Based on a Family of Pulsed W-Band TWTs

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A so-called shumotron (a chaotic oscillator with a continuous spectrum based on two coupled traveling wave tubes, one of which is an amplifier and the other acts as a nonlinear element) is modeled using a nonstationary distributed model of a traveling wave tube (TWT). The results can be used to develop a W-band noise generator based on experimentally realized pulsed TWTs with an output power level of tens of watts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bell, D.C. and Narayanan, R.M., IEEE Trans. Signal Process., 2001, vol. 49, no. 2, p. 394.

    Article  ADS  Google Scholar 

  2. Kulpa, K., Signal Processing in Noise Waveform Radar, Boston, London: Artech House, 2013.

    Google Scholar 

  3. Anza, S., Vicente, C., Gil, J., et al., IEEE Trans. Microwave Theory Tech., 2012, vol. 60, no. 7, p. 2093.

    Article  ADS  Google Scholar 

  4. Qian, C., Ding, D., Bi, J., and Chen, R., IEEE Microwave Wireless Compon. Lett., 2016, vol. 26, no. 2, p. 77.

    Article  Google Scholar 

  5. Dmitriev, A.S., Generatsiya khaosa (Chaos Generation), Moscow: Tekhnosfera, 2012.

  6. Kotyrev, E.A. and Pliss, L.E., Vopr. Radioelektron. Ser. Obshchetekh., 1961, no. 1, p. 24.

  7. Belyaev, R.V., Kalyanov, E.V., and Kislov, V.Ya ., J. Commun. Technol. Electron., 1997, vol. 42, no. 2, p. 172.

    Google Scholar 

  8. Marchewka, C., Larsen, P., Bhattacharjee, S., et al., Phys. Plasmas, 2006, vol. 13, no. 1, p. 013104.

    Article  ADS  Google Scholar 

  9. Zhidkov, A.P., Izv. Vyssh. Uchebn. Zaved.,Prikl. Nelineinaya Din., 2014, vol. 22, no. 6, p. 42.

    Google Scholar 

  10. Dmitriev, B.S., Zharkov, Yu.D., Sadovnikov, S.A., et al., Izv. Vyssh. Uchebn. Zaved.,Prikl. Nelineinaya Din., 2015, vol. 23, no. 3, p. 106.

    Google Scholar 

  11. Kalinin, V.I., Zalogin, N.N., and Kislov, V.Ya., Radiotekh. Elektron., 1983, vol. 28, no. 10, p. 2001.

    ADS  Google Scholar 

  12. Belyaev, R.V., Vorontsov, G.M., Zalogin, N.N., et al., Radiotekh. Elektron., 1985, vol. 30, no. 3, p. 504.

    Google Scholar 

  13. Kislov, V.Ya., J. Commun. Technol. Electron., 1993, vol. 38, no. 16, p. 82.

    Google Scholar 

  14. Ginzburg, N.S., Kuznetsov, S.P., and Fedoseeva, T.N., Radiophys. Quantum Electron., 1978, vol. 21, no. 7, p. 728.

    Article  ADS  Google Scholar 

  15. Korovin, S.D., Eltchaninov, A.A., Rostov, V.V., et al., Phys. Rev. E, 2006, vol. 74, no. 1, p. 016501.

    Article  ADS  Google Scholar 

  16. Ryskin, N.M., Radiophys. Quantum Electron., 2004, vol. 47, no. 2, p. 116.

    Article  ADS  Google Scholar 

  17. Trubetskov, D.I. and Khramov, A.E., Lektsii po sverkhvysokochastotnoi elektronike dlya fizikov (Lectures on Microwave Electronics for Physicists), Moscow: Fizmatlit, 2003, vol. 1.

  18. Ivanov, A.A., Radiophys. Quantum Electron., 2017, vol. 59, nos. 8–9, p. 648.

    Article  ADS  Google Scholar 

  19. Zalogin, N.N., Radiotekhnika, 2005, no. 3, p. 5.

  20. Myasin, E.A., Izv. Vyssh. Uchebn. Zaved.,Prikl. Nelineinaya Din., 2014, vol. 22, no. 2, p. 104.

    Google Scholar 

  21. Belyavsky, B.A., Borodin, V.A., and Nosovets, A.F., J. Commun. Technol. Electron., 2014, vol. 59, no. 8, p. 812.

    Article  Google Scholar 

  22. Kowalski, E.J., Shapiro, M.A., and Temkin, R.J., IEEE Trans. Electron Devices, 2015, vol. 62, no. 5, p. 1609.

    Article  ADS  Google Scholar 

  23. Zhang, X., Feng, J., Cai, J., et al., IEEE Trans. Electron Devices, 2017, vol. 64, no. 12, p. 5151.

    Article  ADS  Google Scholar 

  24. Du, Y., Cai, J., Pan, P., et al., IEEE Trans. Plasma Sci., 2019, vol. 47, no. 1, p. 219.

    Article  ADS  Google Scholar 

  25. Tucek, J.C., Basten, M.A., Gallagher, D.A., et al., Proc. IEEE Int. Vacuum Electronics Conf., Monterey, 2016. https://doi.org/10.1109/IVEC.2016.7561772

  26. Deal, W.R., Foster, T., Wong, M.B., et al., Proc. IEEE/MTT-S Int. Microwave Symp., Honolulu, 2017, p. 233.

  27. Song, H.-J., Shimizu, N., Furuta, T., et al., Appl. Phys. Lett., 2008, vol. 93, p. 241113.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-08-00955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ivanov.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.A., Nagornuk, M.S., Smirnov, A.E. et al. Development of Wide-Band Chaotic Oscillators Based on a Family of Pulsed W-Band TWTs. Bull. Russ. Acad. Sci. Phys. 84, 184–188 (2020). https://doi.org/10.3103/S1062873820020136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820020136

Navigation