Skip to main content
Log in

Effect of Silicon Content on the Microstructure and Mechanical Properties of Niobium–Silicon Alloy

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The microstructure and high-temperature mechanical properties of samples of (1 − х)(Nb–9Mo–13Ti–4Hf–4Zr–4Al–4Сr)–хSi alloy, where x = 5, 10, 15, and 20 at % of Si are studied. An alloy with 15 at % Si displays the highest strength characteristics (tensile strength and coefficient of stress concentration during bending at room temperature, bending strength at 1300°C). Alloy samples with 15 at % Si also display the highest 100-hour strength when tested in creep mode at temperatures of 1200 and 1300°C. Mechanisms of deformation are proposed for the investigated alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Balsone, S.J., Bewlay, B.P., Jackson, M.R., et al., Proc. 3rd Int. Symp. on Structural Intermetallics, Snow King Resort, Jackson Hole, 2001, p. 99.

  2. Karpov, M.I., Vnukov, V.I., Korzhov, V.P., Stroganova, T.S., Zheltyakova, I.S., Prokhorov, D.V., Gnesin, I.B., Kiiko, V.M., Kolobov, Yu.R., Golosov, E.V., and Nekrasov, A.N., Russ. Metall., 2014, vol. 2014, no. 4, p. 267.

    Article  ADS  Google Scholar 

  3. Kablov, E.N., Karpov, M.I., Svetlov, I.L., et al., RF Patent 2557117, 2015.

  4. Bewlay, B.P. and Jackson, M.R., US Patent 5833773, 1995.

  5. Zhang, S. and Guo, X., Mater. Rev., 2012, vol. 26, p. 95.

    Google Scholar 

  6. Wang, L., Jia, L., Cui, R., et al., Chin. J. Aeronaut., 2012, vol. 25, no. 2, p. 292.

    Article  Google Scholar 

  7. Mao, W. and Guo, X., Prog. Nat. Sci.: Mater. Int., 2012, vol. 22, no. 2, p. 139.

    Article  Google Scholar 

  8. Su, L., Jia, L., Feng, Y., et al., Mater. Sci. Eng. A, 2013, vol. 560, p. 672.

    Article  Google Scholar 

  9. Yan, Y., Ding, H., Kang, Y., and Song, J., Mater. Des., 2014, vol. 55, p. 450.

    Article  Google Scholar 

  10. Haisheng, G., Xiping, G., and Honglei, Z., Rare Met. Mater. Eng., 2014, vol. 43, no. 4, p. 1019.

    Google Scholar 

  11. Stroganova, T.S., Karpov, M.I., Korzhov, V.P., Vnukov, V.I., Prohorov, D.V., Zheltyakova, I.S., Gnesin, I.B., and Svetlov, I.L., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1151.

    Article  Google Scholar 

  12. Guo, F., Kang, Y., and Xiao, C., J. Mater. Eng., 2016, vol. 44, no. 10, p. 8.

    Google Scholar 

  13. Svetlov, I.L., Kuzmina, N.A., Neiman, A.V., Ishadzhanova, I.V., Karpov, M.I., Stroganova, T.S., Korzhov, V.P., and Vnukov, V.I., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1146.

    Article  Google Scholar 

  14. Bewlay, B.P., Jackson, M.R., Subramanian, P.R., and Zhao, J.C., Metall. Mater. Trans. A, 2003, vol. 34, no. 10, p. 2043.

    Article  Google Scholar 

  15. Kim, W.Y., Tanaka, H., and Hanada, S., Mater. Trans., 2002, vol. 43, no. 6, p. 1415.

    Article  Google Scholar 

  16. Tanaka, R., Kasama, A., Fujikura, M., et al., Proc. Int. Gas Turbine Congress, Tokyo, 2003, p. 2.

  17. Fujikura, M., Kasama, A., Tanaka, R., and Hanada, S., Mater. Trans., 2004, vol. 45, no. 2, p. 493.

    Article  Google Scholar 

  18. Li, Y., Ma, C., Zhang, H., and Miura, S., Mater. Sci. Eng. A, 2011, vol. 528, no. 18, p. 5772.

    Article  Google Scholar 

  19. Miura, S., Murasato, Y., Sekito, Y., et al., Mater. Sci. Eng. A, 2009, vol. 510, p. 317.

    Article  Google Scholar 

  20. Subramanian, P.R., Parthasarathy, T.A., Mendiratta, M.G., and Dimiduk, D.M., Scr. Metall. Mater., 1995, vol. 32, no. 8, p. 1227.

    Article  Google Scholar 

  21. Gang, F. and Heilmaier, M., JOM, 2014, vol. 66, no. 9, p. 1908.

    Article  Google Scholar 

  22. Tang, Y. and Guo, X., Scr. Mater., 2016, vol. 116, p. 16.

    Article  Google Scholar 

  23. Broek, D., Elementary Engineering Fracture Mechanics, Springer, 1982.

    Book  Google Scholar 

  24. Knittel, S., Mathieu, S., and Vilasi, M., Intermetallics, 2014, vol. 47, p. 36.

    Article  Google Scholar 

  25. Soboyejo, W.O. and Srivatsan, T.S., Advanced Structural Materials: Properties, Design Optimization, and Applications, Boca Raton: CRC Press, 2006.

    Book  Google Scholar 

  26. Courtney, T.H., Mechanical Behavior of Materials, Long Grove: Waveland, 2005.

  27. Kuzmina, N.A., Marchenko. E.I., Eremin, N.N., et al., Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Fundamental’nye i prikladnye issledovaniya v oblasti sozdaniya liteinykh zharoprochnykh nikelevykh i intermetallidnykh splavov i vysokoeffektivnykh tekhnologii izgotovleniya detalei GTD” (Proc. All-Russian Sci. Conf. “Fundamental and Applied Research into the Production of Casting Heat-Resistant Nickel and Intermetallide Alloys and High-Efficiency Methods for Fabrication of Gas-Turbine Engine Parts”), Moscow, 2017, p. 188.

  28. Kim, J.H., Tabaru, T., Hirai, H., et al., Scr. Mater., 2003, vol. 48, no. 10, p. 1439.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 16-02-00384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Stroganova.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, M.I., Vnukov, V.I., Stroganova, T.S. et al. Effect of Silicon Content on the Microstructure and Mechanical Properties of Niobium–Silicon Alloy. Bull. Russ. Acad. Sci. Phys. 83, 1235–1243 (2019). https://doi.org/10.3103/S1062873819100113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873819100113

Navigation