Skip to main content
Log in

A New Detector for Studying Cumulative Processes in Hadronic Collisions

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The increased luminosity of modern accelerators allows the scope of research to be expanded in experiments on fixed targets in high-energy physics. New prospects are thus opening up for studying so-called cumulative processes. These can be associated with the formation of the multi-quark configurations within nuclei (so-called fluctons, which are dense clots of cold quark–gluon plasma). Their detection and study in hadron collisions is possible by registering secondary particles in the region kinematically forbidden for reactions on free nucleons. It is of particular interest to study correlations between the production of cumulative particles and particles that contain strange quarks and heavy flavors, an increase in the yield of which is expected in cumulative processes. The concept of a new detector for registering particles in hadron–hadron collisions in cumulative processes is presented, along with the corresponding results from their modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Blokhintsev, D.I., J. Exp. Theor. Phys., 1958, vol. 6, p. 995.

    ADS  Google Scholar 

  2. Leksin, G.A., J. Exp. Theor. Phys., 1957, vol. 5, p. 371.

    Google Scholar 

  3. Azhgirej, L.S., Vzorov, I.K., Zrelov, V.P., Meshcheriakov, M.G., Neganov, B.S., and Shabudin, A.F., J. Exp. Theor. Phys., 1958, vol. 6, p. 911.

    ADS  Google Scholar 

  4. Baldin, A.M., Kratk. Soobshch. Fiz., 1971, vol. 1, p. 35.

    Google Scholar 

  5. Baldin, A.M., Yad. Fiz., 1973, vol. 18, p. 79.

    Google Scholar 

  6. Stavinsky, V.S., Phys. Elem. Part. At. Nucl., 1979, vol. 10, no. 5, p. 949.

    Google Scholar 

  7. Braun, M.A. and Vechernin, V.V., Nucl. Phys. B, 1994, vol. 427, p. 614.

    Article  ADS  Google Scholar 

  8. Braun, M.A. and Vechernin, V.V., Phys. At. Nucl., 1997, vol. 60, p. 432.

    Google Scholar 

  9. Braun, M.A. and Vechernin, V.V., Phys. At. Nucl., 2000, vol. 63, p. 1831.

    Article  Google Scholar 

  10. Braun, M.A. and Vechernin, V.V., Theor. Math. Phys., 2004, vol. 139, p. 766.

    Article  Google Scholar 

  11. Frankfurt, L.L. and Strikman, M.I., Phys. Lett. B, 1977, vol. 69, p. 93.

    Article  ADS  Google Scholar 

  12. Frankfurt, L.L. and Strikman, M.I., Sov. J. Nucl. Phys., 1977, vol. 25, p. 625.

    Google Scholar 

  13. Frankfurt, L.L. and Strikmann, M.I., Phys. Elem. Part. At. Nucl., 1980, vol. 11, p. 571.

    Google Scholar 

  14. Egiyan, K.S., et al., Phys. Rev. Lett., 2006, vol. 96, p. 082501.

    Article  ADS  Google Scholar 

  15. Frankel, S., Phys. Rev. Lett., 1977, vol. 38, p. 1338.

    Article  ADS  Google Scholar 

  16. Kopeliovich, V.B., JETP Lett., 1976, vol. 23, p. 313.

    ADS  Google Scholar 

  17. Braun, M.A. and Vechernin, V.V., Yad. Fiz., 1978, vol. 28, p. 1466.

    Google Scholar 

  18. Braun, M.A. and Vechernin, V.V., Yad. Fiz., 1986, vol. 43, p. 1579.

    Google Scholar 

  19. Vechernin, V.V., AIP Conf. Proc., 2016, vol. 1701, p. 060020.

    Article  Google Scholar 

  20. https://indico.cern.ch/event/640167/contributions/ 2596546/attachments/1460806/2256337/Vechernin-VD.ppt.

  21. Bogatskaya, I.G., Chiu, C.B., Gorenstein, M.I., and Zinovjev, G.M., Phys. Rev. C, 1980, vol. 22, no. 1, p. 209.

    Article  ADS  Google Scholar 

  22. Anchishkin, D.V., Gorenstein, M.I., and Zinovjev, G.M., Phys. Lett. B, 1982, vol. 108, no. 1, p. 47.

    Article  ADS  Google Scholar 

  23. Motornenko, A. and Gorenstein, M.I., arXiv: 1604.04308 [hep-ph].

  24. https://urqmd.org/.

  25. https://indico.cern.ch/event/232125/contributions/1541450/.

  26. Bayukov, Y.D., Efremenko, V.I., Frankel, S., et al., Phys. Rev. C, 1979, vol. 20, no. 2, p. 764.

    Article  ADS  Google Scholar 

  27. Ammosov, V.V., Antonov, N.N., Baldin, A.A., Viktorov, V.A., Gapienko, V.A., Gapienko, G.S., Golovin, A.A., Gres, V.N., Ivanilov, A.A., Koreshev, V.I., Korotkov, V.A., Mysnik, A.I., Prudkoglyad, A.F., Svi-ridov, Yu.M., Semak, A.A., et al., Phys. At. Nucl., 2013, vol. 76, p. 1213.

    Article  Google Scholar 

  28. Abelev, B., et al., J. Phys. G, 2014, vol. 41, p. 087002.

    Article  ADS  Google Scholar 

  29. Zherebchevsky, V.I., Altsybeeva, I.G., Feofilov, G.A., et al., J. Instrum., 2018, vol. 13, p. T08003.

    Article  Google Scholar 

  30. Coffin, J., Nucl. Phys. A, 1999, vol. 661, no. 1, p. 698.

    Article  ADS  Google Scholar 

  31. Lippmann, C., Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, vol. 666, p. 148.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. V.V. Vechernin for his consistent interest in this work.

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-10176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Lazareva.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazareva, T.V., Valiev, F.F., Zherebchevsky, V.I. et al. A New Detector for Studying Cumulative Processes in Hadronic Collisions. Bull. Russ. Acad. Sci. Phys. 83, 1155–1160 (2019). https://doi.org/10.3103/S1062873819090144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873819090144

Navigation