Spontaneous Cyclotron Radiation of a Dense Electron Bunch

  • Yu. S. OparinaEmail author
  • A. V. SavilovEmail author


Short dense electron bunches generated by today’s photoinjectors [1–5] are advantageous for creating powerful sources of spontaneous coherent radiation in the terahertz frequency range. The regime of spontaneous radiation is achieved when the bunch size in the phase space is well below 2π. Coulomb interaction between particles in the dense bunches increases the axial size, and thus can limit the power and duration of radiation. It is shown this problem can be solved for cyclotron radiation by compensating for the Coulomb repulsion in the phase space.



This work was supported by the Russian Foundation for Basic Research, project nos. 16-02-00794 and 18-32-00351. Some of the work was done as part of a State Task for the Institute of Applied Physics, Russian Academy of Sciences, project no. 0035-2014-0012.


  1. 1.
    Chiadroni, E., Bacci, A., Bellaveglia, M., Castellano, M., et al., J. Phys.: Conf. Ser., 2012, vol. 359, p. 012018.Google Scholar
  2. 2.
    Schneidmiller, E.A., Yurkov, M.V., et al., Proc. SPIE, 2013, vol. 8778, p. 877 811.CrossRefGoogle Scholar
  3. 3.
    Boonpornprasert, P., Khojoyan, M., et al., Proc. 36th Int. Free Electron Laser Conf., Basel, 2014, p. 153.Google Scholar
  4. 4.
    Wibmann, L., Emons, M., Kellert, M., et al., Proc. 36th Int. Free Electron Laser Conf., Basel, 2014, p. 807.Google Scholar
  5. 5.
    Bandurkin, I.V., Bratman, V.L., Kurakin, I.S., et al., Proc. 18th Int. Vacuum Electronics Conf., London, 2017. doi 10.1109/IVEC.2017.8289616Google Scholar
  6. 6.
    Doria, A., Bartolini, R., Feinstein, J., et al., IEEE J. Quantum Electron., 1993, vol. 29, p. 1428.ADSCrossRefGoogle Scholar
  7. 7.
    Gover, A. Hartemann, F.V., et al., Phys. Rev. Lett., 1994, vol. 72, p. 1192.ADSCrossRefGoogle Scholar
  8. 8.
    Doria, A., Gallerano, G.P., et al., Phys. Rev. Lett., 2004, vol. 93, p. 264 801.CrossRefGoogle Scholar
  9. 9.
    Power, J.G., AIP Conf. Proc., 2010, vol. 1299, p. 20.ADSCrossRefGoogle Scholar
  10. 10.
    Balal, N., Bandurkin, I.V., et al., Phys. Lett. A., 2015, vol. 107, p. 163 505.CrossRefGoogle Scholar
  11. 11.
    Lurie, Y., Bratman, V.L., and Savilov, A.V., Phys. Rev. Accel. Beams, 2016, vol. 19, p. 050704.ADSCrossRefGoogle Scholar
  12. 12.
    Musumeci, P., Cultrera, L., et al., Phys. Rev. Lett., 2010, vol. 104, p. 084801.ADSCrossRefGoogle Scholar
  13. 13.
    Bandurkin, I.V., Kuzikov, S.V., and Savilov, A.V., Appl. Phys. Lett., 2014, vol. 105, p. 073503.ADSCrossRefGoogle Scholar
  14. 14.
    Savilov, A.V., Bandurkin, I.V., and Oparina, Yu.S., EPJ Web Conf., 2017, vol. 149, p. 05008.Google Scholar
  15. 15.
    Oparina, Yu.S. and Savilov, A.V., EPJ Web Conf., 2017, vol. 149, p. 05019.Google Scholar
  16. 16.
    Ginzburg, N.S., Zotova, I.V., and Sergeev, A.S., JETP Lett., 1994, vol. 60, p. 513.ADSGoogle Scholar
  17. 17.
    Bartnik, A., Gulliford, C., Bazarov, I., et al., Phys. Rev. Accel. Beams, 2015, vol. 18, p. 083401.ADSCrossRefGoogle Scholar
  18. 18.
    Bandurkin, I.V., Oparina, Yu.S., and Savilov, A.V., Appl. Phys. Lett., 2017, vol. 110, no. 26, p. 263 508.CrossRefGoogle Scholar
  19. 19.
    Bratman, V.L., Ginzburg, N.S., et al., Int. J. Electron., 1981, vol. 51, p. 541.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhniy NovgorodRussia

Personalised recommendations