Skip to main content
Log in

Terahertz Undulator Radiation of Stabilized Dense Electron Beams

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Dense short electron bunches produced by state-of-the-art photoinjector-based accelerators are used to create sources of powerful electromagnetic pulses of terahertz frequency range based on spontaneous coherent emission by these bunches. However, there is a problem of stabilizing the phase dimension of a bunch along the space of electron wave interaction. In this work, two means of such stabilization are considered that are based on using the intrinsic electromagnetic fields (quasi-static and radiation) of bunches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Power, J.G., AIP Conf. Proc., 2010, vol. 1299, p. 20.

    Article  ADS  Google Scholar 

  2. Bartnik, A., Gulliford, C., Bazarov, I., et al., Phys. Rev. Spec. Top.–Accel. Beams, 2015, vol. 18, p. 083401.

    Article  ADS  Google Scholar 

  3. Stephan, F., Boulware, C.H., Krasilnikov, M., et al., Phys. Rev. Spec. Top.–Accel. Beams, 2010, vol. 13, p. 020704.

    Article  ADS  Google Scholar 

  4. Rosenzweig, J.B., Valloni, A., Alesini, D., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 657, p. 107.

    Google Scholar 

  5. Quintero, K.J.P., Antipov, S., Sumant, A.V., et al., Appl. Phys. Lett., 2014, vol. 105, p. 123 103.

    Article  Google Scholar 

  6. Doria, A., Bartolini, R., Feinstein, J., et al., IEEE J. Quantum Electron., 1993, vol. 29, p. 1428.

    Article  ADS  Google Scholar 

  7. Gover, A., Hartemann, F.V., Le Sage, G.P., et al., Phys. Rev. Lett., 1994, vol. 72, p. 1192.

    Article  ADS  Google Scholar 

  8. Lurie, Y. and Pinhasi, Y., Phys. Rev. Spec. Top.–Accel. Beams, 2007, vol. 10, p. 080703.

    Article  ADS  Google Scholar 

  9. Lurie, Y., Friedman, A., and Pinhasi, Y., Phys. Rev. Spec. Top.–Accel. Beams, 2015, vol. 18, p. 070701.

    Article  ADS  Google Scholar 

  10. Bratman, V.L., Jaroszynsky, D.A., Samsonov, S.V., and Savilov, A.V., Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 475, p. 436.

    Google Scholar 

  11. Lee, K., Mun, J., Park, S.H., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 776, p. 27.

    Google Scholar 

  12. Balal, N., Bandurkin, I.V., Bratman, V.L., et al., Appl. Phys. Lett., 2015, vol. 107, p. 163 505.

    Article  Google Scholar 

  13. Lurie, Y., Bratman, V.L., and Savilov, A.V., Phys. Rev. Accel. Beams, 2016, vol. 19, p. 050704.

    Article  ADS  Google Scholar 

  14. Ginzburg, N.S. and Peskov, N.Yu., Tech. Phys., 1988, vol. 58, p. 859.

    Google Scholar 

  15. Freund, H.P. and Antonsen, T.M., Principles of Free-Electron Lasers, London: Chapman and Hall, 1996.

    Google Scholar 

  16. Bandurkin, I.V., Kuzikov, S.V., and Savilov, A.V., Appl. Phys. Lett., 2014, vol. 105, p. 073503.

    Article  ADS  Google Scholar 

  17. Nielsen, C. and Sessler, A., Rev. Sci. Instrum., 1959, vol. 30, p. 80.

    Article  ADS  Google Scholar 

  18. Kolomensky, A.A. and Lebedev, A.N., At. Energy, 1959, vol. 7, p. 549.

    Google Scholar 

  19. Bondeson, A. and Antonsen, T.M., Int. J. Electron., 1986, vol. 61, p. 855.

    Article  Google Scholar 

  20. Bratman, V.L. and Savilov, A.V., Phys. Plasmas, 1995, vol. 2, p. 557.

    Article  ADS  Google Scholar 

  21. Savilov, A.V., Phys. Plasmas, 1997, vol. 4, p. 2276.

    Article  ADS  Google Scholar 

  22. Bratman, V.L., Dumbrajs, O., Nikkola, P., and Sa-vilov, A.V., IEEE Trans. Plasma Sci., 2000, vol. 28, p. 633.

    Article  ADS  Google Scholar 

  23. Balal, N., Bandurkin, I.V., Bratman, V.L., and Fedotov, A.E., Phys. Rev. Accel. Beams, 2017, vol. 20, p. 122 401.

    Article  Google Scholar 

  24. Bandurkin, I.V., Kurakin, I.S., and Savilov, A.V., Phys. Rev. Accel. Beams, 2017, vol. 20, p. 020704.

    Article  ADS  Google Scholar 

  25. Ginzburg, N.S., Malkin, A.M., and Sergeev, A.S., J. Exp. Theor. Phys., 2003, vol. 96, p. 904.

    Article  ADS  Google Scholar 

  26. Curry, E., Fabbri, S., Musumeci, P., and Gover, A., New J. Phys., 2016, vol. 18, p. 113 045.

    Article  Google Scholar 

  27. Bandurkin, I.V., Oparina, Y.S., and Savilov, A.V., Appl. Phys. Lett., 2017, vol. 110, p. 263 508.

    Article  Google Scholar 

  28. Ginzburg, N.S., Zotova, I.V., and Sergeev, A.S., JETP Lett., 1994, vol. 60, p. 513.

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project nos. 16-02-00794 and 18-32-00351; and by the Israeli Ministry of Science, Technology, and Space. A portion of this work was performed a part of a State Task for the Institute of Applied Physics, Russian Academy of Sciences, project no. 0035-2014-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savilov.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Kurakin, I.S., Oparina, Y.S. et al. Terahertz Undulator Radiation of Stabilized Dense Electron Beams. Bull. Russ. Acad. Sci. Phys. 82, 1587–1591 (2018). https://doi.org/10.3103/S1062873818120262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818120262

Navigation