Advertisement

Bulletin of the Russian Academy of Sciences: Physics

, Volume 82, Issue 9, pp 1096–1100 | Cite as

Phase Transitions in a Mixture of Amorphous C60 and C70 Fullerene Phases at High Temperatures and Pressures

  • M. S. BlanterEmail author
  • V. V. Brazhkin
  • V. P. Filonenko
  • P. A. Borisova
Article
  • 22 Downloads

Abstract

Phase transitions in two types of amorphous fullerene phases (C60–C70 (50/50) mixtures and an amorpous C70 fullerene phase) are studied via neutron diffraction at pressures of 2–8 GPa and temperatures of 200–1100°C. Fullerenes are amorphized by grinding in a ball mill and sintered under quasi-hydrostatic pressure in a toroidal-type chamber. Diffraction studies are performed ex situ. It is shown that the amorphous phase of fullerenes retains its structure at temperatures of 200–500°C, and amorphous graphite is formed at 800–1100°C with a subsequent transition to crystalline graphite. This process is slow in a mixture of fullerenes, compared to C70 fullerene. According to neutron diffraction data, the amorphous graphite formed from amorphous fullerene phases has anisotropy that is much weaker in a fullerene mixture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sundqvist, B., Adv. Phys., 1999, vol. 48, no. 1, p. 1.ADSCrossRefGoogle Scholar
  2. 2.
    Lyapin, A.G., Brazhkin, V.V., Gromnitskaya, E.L., et al., Appl. Phys. Lett., 2000, vol. 76, p. 712.ADSCrossRefGoogle Scholar
  3. 3.
    Brazhkin, V.V. and Lyapin, A.G., J. Superhard Mater., 2012, vol. 34, no. 6, p. 400.CrossRefGoogle Scholar
  4. 4.
    Verheijen, M.A., Meekes, H., Meijer, G., et al., Chem. Phys., 1992, vol. 166, nos. 1–2, p. 287.Google Scholar
  5. 5.
    Blank, V.D., Serebryanaya, N.R., Dubitsky, G.A., et al., Phys. Lett. A, 1998, vol. 248, nos. 5–6, p. 415.Google Scholar
  6. 6.
    Sundar, C.S., Sahu, P.Ch., Sastry, V.S., et al., hys. Rev. B, 1996, vol. 53, p. 8180.ADSCrossRefGoogle Scholar
  7. 7.
    Chernogorova, O., Potapova, I., Drozdova, E., et al., Appl. Phys. Lett., 2014, vol. 104, no. 4, p. 43110.CrossRefGoogle Scholar
  8. 8.
    Lepoittevin, C., Alvarez-Murda, M., Margues, L., and Mezouar Hodeau, M.J.L., Carbon, 2013, vol. 52, p. 278.CrossRefGoogle Scholar
  9. 9.
    Tat’yanin, E.V., Lyapin, A.G., Mukhamadiarov, V.V., et al., J. Phys.: Condens. Matter, 2005, vol. 7, p. 249.ADSGoogle Scholar
  10. 10.
    Lad’yanov, V.I., Nikonova, R.M., Larionova, N.S., Aksenova, V.V., Mukhgalin, V.V., and Rud’, A.D., Phys. Solid State, 2013, vol. 55, no. 6, p. 1319.ADSCrossRefGoogle Scholar
  11. 11.
    Liu, Z.G., Ohi, H., Tsuchiya, K., and Umemoto, M., J. Mater. Sci. Technol., 1999, vol. 15, no. 5, p. 405.Google Scholar
  12. 12.
    Borisova, P.A., Blanter, M.S., Brazhkin, V.V., et al., J. Phys. Chem. Solids, 2015, vol. 83, p. 104.ADSCrossRefGoogle Scholar
  13. 13.
    Ujihara, Y. and Takahashi, Y., J. Jpn. Inst. Met., 2011, vol. 75, no. 12, p. 671.CrossRefGoogle Scholar
  14. 14.
    Khvostantsev, L.G., Slesarev, V.N., and Brazhkin, V.V., High Pressure Res., 2004, vol. 24, no. 3, p. 371.ADSCrossRefGoogle Scholar
  15. 15.
    Glazkov, V.P., Naumov, I.V., Somenkov, V.A., and Shil’shtein, S.S., Nucl. Instrum. Methods Phys. Res., Sect. A, 1988, vol. 264, no. 2, p. 367.ADSCrossRefGoogle Scholar
  16. 16.
    Blank, V.D., Buga, S.G., Dubitsky, G.A., et al., Carbon, 1988, vol. 36, p. 319.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. S. Blanter
    • 1
    Email author
  • V. V. Brazhkin
    • 2
  • V. P. Filonenko
    • 2
  • P. A. Borisova
    • 3
  1. 1.Russian Technological University MIREAMoscowRussia
  2. 2.Vereshchagin Institute for High Pressure PhysicsRussian Academy of SciencesTroitskRussia
  3. 3.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations