Clusters in a Lithium Niobate Monocrystal

  • V. M. Voskresensky
  • O. R. Starodub
  • N. V. Sidorov
  • M. N. Palatnikov
Proceedings of the XXI National Conference on Magnetoelectrics Physics


An approach to calculating the clusters in a lithium niobate crystal’s structure, in which an oxygen octahedron is taken as a structural unit rather than an elementary cell, is substantiated for the first time. It is shown there is an energetically favorable cluster size within which the structure that forms tends to be that of a congruent crystal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuz’minov, Yu.S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya (Electrooptical and Nonlinear-Optical Lithium Niobate Crystal), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Kuz’minov, Yu.S., Osiko, V.V., and Prokhorov, A.M., Sov. J. Quantum Electron., 1980, vol. 10, no. 8, p.941.CrossRefADSGoogle Scholar
  3. 3.
    Shcherbina, O.B., Palatnikov, M.N., and Kokhanchik, L.S., Sintez i svoistva kristallov LiNbO3 i LiTaO3 s mikro-i nanostrukturami (Synthesis and Properties of LiNbO3 and LiTaO3 Crystals with Micro-and Nanostructures), Saarbrucken: Lambert Academic, 2013.Google Scholar
  4. 4.
    Sidorov, N.V., Volk, T.R., Mavrin, B.N, and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.Google Scholar
  5. 5.
    Volk, T. and Wöhlecke, M., Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer, 2008.CrossRefGoogle Scholar
  6. 6.
    Donnerberg, H., Tomlinson, S.M., Catlow, C.R.A., and Schirmer, O.F., Phys. Rev. B, 1989, vol. 40, no. 17, p. 11909.CrossRefADSGoogle Scholar
  7. 7.
    Zotov, N., Boysen, H., Frey, F., et al., J. Phys. Chem. Solids, 1994, vol. 55, no. 2, p.145.CrossRefADSGoogle Scholar
  8. 8.
    Chernaya, T.S., Volk, T.R., Verin, I.A., and Simonov, V.I., Crystallogr. Rep., 2008, vol. 53, no. 4, p.573.CrossRefADSGoogle Scholar
  9. 9.
    Lobov, D.V., Structure of mineral nanoparticles determined using X-ray and computer simulation data, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Petrozavodsk: Petrozavodsk State Univ., 2005.Google Scholar
  10. 10.
    Fedorova, E.P., Aleshina, L.A., Sidorov, N.V., Chufyrev, P.G., Yanichev, A.A., Palatnikov, M.N., Voskresenskii, V.M., and Kalinnikov, V.T., Inorg. Mater., 2010, vol. 46, no. 2, p.206.CrossRefGoogle Scholar
  11. 11.
    Palatnikov, M.N. and Sidorov, N.V., Oxide Electronics and Functional Properties of Transition Metal Oxides, Nova Sci., 2014, p.31.Google Scholar
  12. 12.
    Voskresenskii, V.M., Starodub, O.R., Sidorov, N.V., Palatnikov, M.N., and Mavrin, B.N., Crystallogr. Rep., 2011, vol. 56, no. 2, p. 221.CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. M. Voskresensky
    • 1
  • O. R. Starodub
    • 1
  • N. V. Sidorov
    • 1
  • M. N. Palatnikov
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science CenterRussian Academy of SciencesApatityRussia

Personalised recommendations