Effect of PbNi1/3Nb2/3O3 on the Dielectric and Piezoelectric Properties of Multicomponent Solid Solutions Based on PbMg1/3Nb2/3O3–PbTiO3

  • M. V. Talanov
  • L. A. Reznichenko
Proceedings of the XXI National Conference on Magnetoelectrics Physics


The effect of PbNi1/3Nb2/3O3 addition on the dielectric and piezoelectric responses of the mPbMg1/3Nb2/3O3–nPbNi1/3Nb2/3O3–yPbZn1/3Nb2/3O3–xPbTiO3 ceramic system doped with barium is investigated. It is found that raising the concentration of PbNi1/3Nb2/3O3 results in a sharp drop in the maximum values of piezoelectric module |d31| (by almost half, from 321 to 186 pC/N−1), shifting the maximum of |d31|(x) toward a tetragonal phase (from x ≈ 0.300 to x ≈ 0.325) and increasing the relative permittivity throughout the range of x variation (at low x, from 11 000 to 16 500). Possible reasons for the observed changes are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Park, S.E. and Shrout, T.R., J. Appl. Phys., 1997, vol. 82, p. 1804.ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, S. and Li, F., J. Appl. Phys., 2012, vol. 111, p. 031301.ADSCrossRefGoogle Scholar
  3. 3.
    Sun, E. and Cao, W., Prog. Mater. Sci., 2014, vol. 65, p.124.CrossRefGoogle Scholar
  4. 4.
    Hwang, G.-T., Park, H., Lee, J.-H., et al., Adv. Mater., 2014, vol. 26, p. 4880.CrossRefGoogle Scholar
  5. 5.
    Jeong, C.K., Lee, J., Han, S., et al., Adv. Mater., 2015, vol. 27, p. 2866.CrossRefGoogle Scholar
  6. 6.
    Bhattacharya, K. and Ravichandran, G., Acta Mater., 2003, vol. 51, p. 5941.CrossRefGoogle Scholar
  7. 7.
    Nan, T., Zhou, Z., Liu, M., et al., Sci. Rep., 2015, vol. 4, p. 3688.CrossRefGoogle Scholar
  8. 8.
    Hu, J.-M., Chen, L.-Q., and Nan, C.-W., Adv. Mater., 2016, vol. 28, p.15.CrossRefGoogle Scholar
  9. 9.
    Dantsiger, A.Ya., Razumovskaya, O.N., Reznichenko, L.A., et al., Mnogokomponentnye sistemy segnetoelektricheskikh slozhnykh oksidov: fizika, kristallokhimiya, tekhnologiya. Aspekty dizaina p’ezoelektricheskikh materialov (Multicomponent Systems of Ferroelectric Complex Oxides: Physics, Crystal Chemistry, Technology. Design of Piezoelectric Materials), Rostov-on-Don: Rostov. Univ., 2002, vol.1.Google Scholar
  10. 10.
    Talanov, M.V., Verbenko, I.A., Shilkina, L.A., and Reznichenko, L.A., Inorg. Mater., 2012, vol. 48, no. 4, p.386.CrossRefGoogle Scholar
  11. 11.
    Talanov, M.V., Shilkina, L.A., and Reznichenko, L.A., Phys. Solid. State, 2012, vol. 54, no. 5, p.990.ADSCrossRefGoogle Scholar
  12. 12.
    Talanov, M.V., Razumovskaya, O.N., Shilkina, L.A., and Reznichenko, L.A., Inorg. Mater., 2013, vol. 49, no. 9, p.957.CrossRefGoogle Scholar
  13. 13.
    Talanov, M.V., Shilkina, L.A., and Reznichenko, L.A., Sens. Actuators, A, 2014, vol. 217, p.62.CrossRefGoogle Scholar
  14. 14.
    Reznichenko, L.A., Alyoshin, V.A., Shilkina, L.A., et al., Ceram. Int., 2014, vol. 40, p. 15089.CrossRefGoogle Scholar
  15. 15.
    Reznitchenko, L.A., Verbenko, I.A., Razumovskaya, O.N., et al., Ceram. Int., 2012, vol. 38, p. 3835.CrossRefGoogle Scholar
  16. 16.
    Swartz, S.L. and Shrout, T.R., Mater. Res. Bull., 1982, vol. 17, p. 1245.CrossRefGoogle Scholar
  17. 17.
    OST 11 0444-87: Piezoceramic Materials. Technical Specifications, 1988.Google Scholar
  18. 18.
    Smolenskii, G.A. and Agranovskaya, A.I., Zh. Tekh. Fiz., 1958, vol. 28, no. 7, p. 1491.Google Scholar
  19. 19.
    Bokov, V.A. and Myl’nikova, I.E., Fiz. Tverd. Tela, 1961, vol. 3, no. 3, p.841.Google Scholar
  20. 20.
    Noheda, B., Cox, D.E., Shirane, G., et al., Phys. Rev. B, 2002, vol. 66, p. 054104.ADSCrossRefGoogle Scholar
  21. 21.
    Lei, C., Chena, K., Zhang, X., et al., Solid State Commun., 2002, vol. 123, p. 445.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations