Ferroelectric Phase Transitions in Non-Stoichiometric Sodium-Bismuth Titanate Ceramics

  • E. D. Politova
  • D. A. Strebkov
  • A. V. Mosunov
  • N. V. Golubko
  • G. M. Kaleva
  • N. V. Sadovskaya
  • S. Yu. Stefanovich
Proceedings of the XXI National Conference on Magnetoelectrics Physics
  • 8 Downloads

Abstract

Features are studied of the phase formation, structural parameters, microstructure, and dielectric and ferroelectric properties of non-stoichiometric (Na0.5 + xBi0.5)TiO3 ceramics with x = 0–0.1. The investigated samples exhibit ferroelectric phase-transition behavior as anomalies and peaks in dielectric permittivity near 400 and 600 K, respectively. Study of the second harmonic generation shows that phase transitions near 400 K exhibit relaxor-type behavior, indicating there are polar regions in the nonpolar matrix. An increase in the Na/Bi ratio in the initial compositions improves the dielectric and ferroelectric properties of the ceramics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, S.J., Xia, R., and Shrout, R.T., J. Electroceram., 2007, vol. 19, p.251.CrossRefGoogle Scholar
  2. 2.
    Takenaka, T., Nagata, H., and Hiruma, Y., Jpn. J. Appl. Phys., 2008, vol. 47, p. 3787.ADSCrossRefGoogle Scholar
  3. 3.
    Panda, P.K., J. Mater. Sci., 2009, vol. 44, p. 5049.ADSCrossRefGoogle Scholar
  4. 4.
    Gupta, V., Sharma, M., and Thakur, N., J. Intell. Mater. Syst. Struct., 2010, vol. 21, p. 1227.CrossRefGoogle Scholar
  5. 5.
    Rodel, J., et al., J. Eur. Ceram. Soc., 2015, vol. 35, p. 1659.CrossRefGoogle Scholar
  6. 6.
    Smolenskii, G.A., et al., Fiz. Tverd. Tela, 1961, vol. 2, p. 2651.Google Scholar
  7. 7.
    Vakhrushev, S.B., et al., Ferroelectrics, 1985, vol. 63, p.153.CrossRefGoogle Scholar
  8. 8.
    Jones, G.O. and Thomas, P.A., Acta Crystallogr. Sect. B, 2002, vol. 58, p.168.CrossRefGoogle Scholar
  9. 9.
    Dorcet, V., Trolliard, G., and Boullay, P., Chem. Mater., 2008, vol. 20, p. 5061.CrossRefGoogle Scholar
  10. 10.
    Tan, X., et al., J. Am. Ceram. Soc., 2011, vol. 94, p. 4091.CrossRefGoogle Scholar
  11. 11.
    Sung, Y.S., et al., Appl. Phys. Lett., 2010, vol. 96, p. 022901.ADSCrossRefGoogle Scholar
  12. 12.
    Shvartsman, V.V. and Lupascu, D.C., J. Am. Ceram. Soc., 2012, vol. 95, p.1.CrossRefGoogle Scholar
  13. 13.
    Li, M., et al., Chem. Mater., 2015, vol. 27, p.629.CrossRefGoogle Scholar
  14. 14.
    Kleemann, W., Int. J. Mod. Phys. B, 1993, vol. 7, p. 2469.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. D. Politova
    • 1
  • D. A. Strebkov
    • 2
  • A. V. Mosunov
    • 1
  • N. V. Golubko
    • 1
  • G. M. Kaleva
    • 1
  • N. V. Sadovskaya
    • 1
  • S. Yu. Stefanovich
    • 1
    • 2
  1. 1.Karpov Research Institute of Physical ChemistryMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations