Advertisement

Microstructural Features and Electrophysical Characteristics of Ceramic–Crystal Matrix Composites

  • M. A. Lugovaya
  • I. A. Shvetsov
  • N. A. Shvetsova
  • E. I. Petrova
  • A. N. Rybyanets
Proceedings of the XXI National Conference on Magnetoelectrics Physics
  • 14 Downloads

Abstract

The electrophysical properties of ceramic–crystal matrix composites are studied. Piezoelectrically active PZT/LiNbO3 ceramic matrix composites with LiNbO3 concentrations of 0–20 vol % are fabricated. Complex elastic, dielectric, and piezoelectric parameters are measured, and the microstructural characteristics of the obtained samples are studied experimentally. It is found that the extreme electrophysical properties of ceramic–crystal matrix composites depend on the properties and structure of the piezoceramic matrix and crystalline filler, and on the matrix microporosity produced during sintering. The electrophysical parameters of ceramic–crystal matrix composites as functions of crystalline filler content are established through the competing microporosity growth effects of the ceramic matrix and the increase in crystalline filler content.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt, S., Beyer, S., Knabe, H., et al., Acta Astronaut., 2004, vol. 55, p.409.ADSCrossRefGoogle Scholar
  2. 2.
    Evans, A.G., J. Am. Ceram. Soc., 1990, vol. 73, no. 2, p.187.CrossRefGoogle Scholar
  3. 3.
    Rybjanets, A., Nasedkin, A., and Turik, A., Integr. Ferroelectr., 2004, vol. 63, p.179.CrossRefGoogle Scholar
  4. 4.
    Rybjanets, A., Rasumovskaja, O., Reznitchenko, L., et al., Integr. Ferroelectr., 2004, vol. 63, p.197.CrossRefGoogle Scholar
  5. 5.
    Thommerel, E., Madigou, V., Villain, S., et al., Mater. Sci. Eng. B, 2003, vol. 97, p.74.CrossRefGoogle Scholar
  6. 6.
    Rybianets, A.N., Ferroelectrics, 2007, vol. 360, no. 1, p.84.CrossRefGoogle Scholar
  7. 7.
    Rybyanets, A.N., Konstantinov, G.M., Naumenko, A.A., Shvetsova, N.A., Makar’ev, D.I., and Lugovaya, M.A., Phys. Solid State, 2015, vol. 57, no. 3, p.527.ADSCrossRefGoogle Scholar
  8. 8.
    Rybianets, A.N., Naumenko, A.A., Lugovaya, M.A., and Shvetsova, N.A., Ferroelectrics, 2015, vol. 484, no. 1, p.95.CrossRefGoogle Scholar
  9. 9.
    Dantsiger, A.Ya., Razumovskaya, O.N., Reznichenko, L.A., et al., Mnogokomponentnye sistemy segnetoelektricheskikh slozhnykh oksidov: fizika, kristallokhimiya, tekhnologiya. Aspekty dizaina p’ezoelektricheskikh materialov (Multicomponent Systems of Ferroelectric Complex Oxides: Physics, Crystal Chemistry, Technology. Design of Piezoelectric Materials), Rostov-on-Don: Rostov. Univ., 2002, vol.2.Google Scholar
  10. 10.
    Rybianets, A.N. and Tasker, R., Ferroelectrics, 2007, vol. 360, p.90.CrossRefGoogle Scholar
  11. 11.
    Rybyanets, A.N., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2011, vol. 58, no. 7, p. 1492.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. A. Lugovaya
    • 1
  • I. A. Shvetsov
    • 1
  • N. A. Shvetsova
    • 1
  • E. I. Petrova
    • 1
  • A. N. Rybyanets
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations