Skip to main content
Log in

Effect of deuterium on phase transformations in fullerenes at high temperatures and high pressures

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The effect deuterium has on phase transformations is studied for amorphous and crystalline fullerenes C60 and C70 at high temperatures of up to 1300°C and high pressures (2–8 GPa). Amorphous fullerene phases are obtained via long grinding in a planetary mill. Structure is studied by means of neutron diffraction. In all cases, amorphous graphite (nanographite) forms in the temperature range of 800–1100°C. This material has different diffraction spectra distinguished by the heights of the halos observed on the graphite diffraction maxima and their relative intensities. These spectra (the structure of nanographite) are affected by preliminary amorphization, the number of carbon atoms in the fullerenes (C60 or C70), and the introduction of deuterium atoms. The different spectra of amorphous (disordered) graphite testify to its varying structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sundqvist, B., Adv. Phys., 1999, vol. 48, no. 1, p. 1.

    Article  ADS  Google Scholar 

  2. Sundqvist, B., Phys. Status Solidi B, 2001, vol. 223, no. 2, p. 469.

    Article  ADS  Google Scholar 

  3. Brazhkin, V.V. and Lyapin, A.G., J. Superhard Mater., 2012, vol. 34, no. 6, p. 400.

    Article  Google Scholar 

  4. Milyavskiy, V.V., Borodina, T.I., Sokolov, S.N., and Zhuk, A.Z., Diamond Relat. Mater., 2005, vol. 14, no. 11, p. 1924.

    Article  ADS  Google Scholar 

  5. Verheijen, M.A., Meekes, H., Meijer, G., et al., Chem. Phys., 1992, vol. 166, nos. 1–2, p. 287.

    Article  ADS  Google Scholar 

  6. Premila, M., Sundar, C.S., Sahu, P.C., Bharathi, A., Hariharan, Y., et al., Solid State Commun., 1997, vol. 104, no. 4, p. 237.

    Article  ADS  Google Scholar 

  7. Blank, V.D., Serebryanaya, N.R., Dubitsky, G.A., et al., Phys. Lett. A, 1998, vol. 248, nos. 5–6, p. 415.

    Article  ADS  Google Scholar 

  8. Borisova, P.A., Blanter, M.S., Brazhkin, V.V., et al., J. Phys. Chem. Solids, 2015, vol. 83, p. 104.

    Article  ADS  Google Scholar 

  9. Agafonov, S.S., Glazkov, V.P., Kokin, I.F., and Somenkov, V.A., Phys. Solid State, 2010, vol. 52, no. 6, p. 1329.

    Article  ADS  Google Scholar 

  10. Sundqvist, B., Low Temp. Phys., 2003, vol. 29, no. 5, p. 440.

    Article  ADS  Google Scholar 

  11. Zinoviev, P.V., Zoryansky, V.N., and Silaeva, N.B., Low Temp. Phys., 2008, vol. 34, no. 6, p. 484.

    Article  ADS  Google Scholar 

  12. Kolesnikov, A.I., Antonov, V.E., Bashkin, I.O., et al., J. Phys.: Condens. Matter, 1997, vol. 9, no. 13, p. 2831.

    ADS  Google Scholar 

  13. Kolesnikov, A.I., Antonov, V.E., Bashkin, I.O., et al., Phys. B, 1999, vol. 263, p. 436.

    Article  ADS  Google Scholar 

  14. Talyzin, A.V. and Jacob, A., J. Alloys Compd., 2005, vol. 395, no. 1, p. 154.

    Article  Google Scholar 

  15. Khvostantsev, L.G., Slesarev, V.N., and Brazhkin, V.V., High Pressure Res., 2004, vol. 24, no. 3, p. 371.

    Article  ADS  Google Scholar 

  16. Glazkov, V.P., Naumov, I.V., Somenkov, V.A., and Shil’shtein, S.S., Nucl. Instrum. Methods Phys. Res., Sect. A, 1988, vol. 264, no. 2, p. 367.

    Article  ADS  Google Scholar 

  17. Blank, V.D., Kulnitskiy, B.A., and Zhigalina, O.M., Carbon, 2000, vol. 38, no. 15, p. 2051.

    Article  Google Scholar 

  18. Chernogorova, O., Potapova, I., Drozdova, E., et al., Appl. Phys. Lett., 2014, vol. 104, no. 4, p. 43110.

    Article  Google Scholar 

  19. Lepoittevin, C., Alvarez-Murda, M., Margues, L., and Mezouar Hodeau, M.J.L., Carbon, 2013, vol. 52, p. 278.

    Article  Google Scholar 

  20. Mukhamadiarov, V.V., Vanin, D.A., Lyapin, A.G., et al., Fullerenes, Nanotubes, Carbon Nanostruct., 2006, vol. 14, nos. 2–3, p. 409.

    Article  ADS  Google Scholar 

  21. Neverov, V.S., Borisova, P.A., Kukushkin, A.B., and Voloshinov, V.V., J. Non-Cryst. Solids, 2015, vol. 427, p. 166.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Blanter.

Additional information

Original Russian Text © P.A. Borisova, M.S. Blanter, V.V. Brazhkin, M.M. Murashev, V.A. Somenkov, V.P. Filonenko, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 11, pp. 1481–1487.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, P.A., Blanter, M.S., Brazhkin, V.V. et al. Effect of deuterium on phase transformations in fullerenes at high temperatures and high pressures. Bull. Russ. Acad. Sci. Phys. 81, 1330–1335 (2017). https://doi.org/10.3103/S1062873817110041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873817110041

Navigation