Skip to main content
Log in

Limits of the stability of hexagonal phases upon uniaxial loading

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

In modern studies, experimental methods for estimating nonlinear elastic moduli are often replaced with calculations of these quantities in mathematical simulation. However, different reliable models and experiments give different values of nonlinear elastic moduli. This work proposes a poßsible solution to the problem of which sets of elastic moduli should be used to predict the properties of substances. Two sets of the second-({cαβ,γδ}), third-({cαβ,γδ}), and fourth-order elastic moduli ({cαβ,γδ,μη,τρ}) of hexagonal Gd crystal proposed in the literature are considered as examples. The elastic moduli are defined as partial derivatives of the nonequilibrium Landau potential ΦL {uαβ{ with respect to components of the tensor of homogeneous deformation of the crystal (Ü). Necessary information about the nonequilibrium Landau potential as a function of {uαβ{ is given in the second section. An analytical way of deriving relationships between generally independent values of nonlinear elastic moduli caused by symmetry is proposed in Sections 3 and 4. The approach is based on using the integral rational basis of invariants (IRBI), which have the form of polynomials {u{. Aspects of the theory of phase transitions based on IRBI are discussed in Section 3. The set of polynomials of the second, third, and fourth order included in the list of basic invariants {J i (P)}, and the form of Landau potential Φ({J i (P)}, are clearly defined. The forms of the chosen dependences {J i (P)} and (ΦL{J i (P)}) are defined in Section 4 to compare the results from different works. Once the forms of Landau potential ΦL{J i (P)} and ΦL{uαβ} are defined, they are compared. The comparison results allow derivation of the nontrivial relationships between the components of the third-C III and fourth-rank elastic moduli tensors C IV due Gd hexagonal symmetry. Two different sets of calculated elastic moduli of Gd crystals, found in two different works, are given in Section 5. The criteria for selecting the most suitable set of numerical values of elastic moduli are described in Sections 6 and 7. One criterion is a comparison of load limits calculated from isothermal Gd elastic moduli and experimentally determined numerical values of the limits of stability of a certain Gd phase. In the last section, we show how the criterion based on comparing the phase stability limits allows us to dertermine which sets of third-rank elastic moduli should be used in, e.g., predicting Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonkov, E.Yu., Fazovye diagrammy elementov pri vysokom davlenii (Phase Diagrams of Elements under High Pressure), Moscow: Nauka, 1979.

    Google Scholar 

  2. Tonkov, E.Yu., Fazovye diagrammy soedinenii pri vysokom davlenii (Phase Diagrams of Compounds under High Pressure), Moscow: Nauka, 1983.

    Google Scholar 

  3. Panovko, Ya.G. and Gubanova, I.I., Ustoichivost’ i kolebaniya uprugikh sistem (Stability and Oscillations of Elastic Systems), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  4. Aizu, K., J. Phys. Soc. Jpn., 1969, vol. 27, no. 2, p. 387.

    Article  ADS  Google Scholar 

  5. Vekilov, Yu.Kh., Krasil’nikov, O.M., Belov, M.P., and Lugovskoy, A.V., Phys.-Usp., 2014, vol. 57, 897.

    Article  ADS  Google Scholar 

  6. Malygin, G.A., Phys.-Usp., 2001, vol. 44, 173.

    Article  ADS  Google Scholar 

  7. Warlimont, H. and Delaey, L., Martensitic Transformations in Copper-, Silver-, and Gold-Based Alloys, Oxford: Pergamon Press, 1974.

    Google Scholar 

  8. Landau, L.D., in L.D. Landau. Sobranie trudov (Collected Papers of L.D. Landau), Moscow: Nauka, 1969, vol. 1, p. 97; Landau, L.D., in L.D. Landau. Sobranie trudov (Collected Papers of L.D. Landau), Moscow: Nauka, 1969, vol. 1, p. 123; Landau, L.D., in L.D. Landau. Sobranie trudov (Collected Papers of L.D. Landau), Moscow: Nauka, 1969, vol. 1, 234.

    Google Scholar 

  9. Landau, L.D. and Lifshitz, E.M., in L.D. Landau. Sobranie trudov (Collected Papers of L.D. Landau), Moscow: Nauka, 1969, vol. 1, p. 128.

    Google Scholar 

  10. Lifshitz, E.M., Zh. Eksp. Teor. Fiz., 1941, vol. 11, p. 255

    Google Scholar 

  11. Lifshitz, E.M., Zh. Eksp. Teor. Fiz., 1944, vol. 14, 353.

    Google Scholar 

  12. Ginzburg, V.L., Zh. Eksp. Teor. Fiz., 1945, vol. 15, 739.

    Google Scholar 

  13. Dzialoshinskii, I.E., J. Exp. Theor. Phys., 1957, vol. 5, p. 1259

    Google Scholar 

  14. Dzialoshinskii, I.E., J. Exp. Theor. Phys., 1958, vol. 6, p. 621

    ADS  Google Scholar 

  15. Dzyaloshinskii, I.E., J. Exp. Theor. Phys., 1960, vol. 10, 628.

    Google Scholar 

  16. Indenbom, V.L, Kristallografiya, 1960, vol. 5, 115.

    MathSciNet  Google Scholar 

  17. Gufan, Yu.M., Fiz. Tverd. Tela, 1971, vol. 13, 225.

    Google Scholar 

  18. Gufan, Yu.M., Strukturnye fazovye perekhody (Structural Phase Transitions), Moscow: Nauka, 1982.

    Google Scholar 

  19. Gufan, Yu.M., Dmitriev, V.P., and Toledano, P., Fiz. Tverd. Tela, 1988, vol. 30, no. 4, p. 1057.

    Google Scholar 

  20. Dmitriev, V.P., Gufan, Yu.M., and Toledano, P., Phys. Rev. B, 1991, vol. 44, no. 14, p. 7248.

    Article  ADS  Google Scholar 

  21. Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys, New York: Wiley-Interscience, 1972.

    Google Scholar 

  22. Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka-Fizmatlit, 1998, part1.

    Google Scholar 

  23. Landau, L.D. and Lifshitz, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

    Google Scholar 

  24. Brugger, K., Phys. Rev., 1964, vol. 133, p. A1611.

    Article  ADS  Google Scholar 

  25. Born, M., Math. Proc. Cambridge Philos. Soc., 1940, vol. 36, 160.

    Article  ADS  Google Scholar 

  26. Wang, H. and Li, M., Phys. Rev. B, 2012, vol. 85, 104103.

    Article  ADS  Google Scholar 

  27. Wang, J., Li, J., Yip, S., Phillpot, S., and Wolf, D., Phys. Rev. B, 1995, vol. 52, 12627.

    Article  ADS  Google Scholar 

  28. Markenscoff, X., J. Appl. Phys., 1979, vol. 50, 1325.

    Article  ADS  Google Scholar 

  29. Gufan, M.A., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 4, p. 484.

    Article  Google Scholar 

  30. Markenscoff, X., J. Appl. Phys., 1977, vol. 48, no. 9, p. 3752.

    Article  ADS  Google Scholar 

  31. Sindhu, S., Fourth order elastic constants and low temperature thermal expansion of some hexagonal crystals, PhD Thesis, Kerala: Mahatma Gandhi University, 1997.

    Google Scholar 

  32. Sirotin, Yu.I. and Shaskol’skaya, M.P., Osnovy kristallofiziki (Foundations of Crystal Physics), Moscow: Nauka, 1975, p. 650.

    Google Scholar 

  33. Landau, L.D. and Lifshitz, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: Nauka, 1987.

    Google Scholar 

  34. Keating, P.N., Phys. Rev., 1966, vol. 145, no. 2, p. 637.

    Article  ADS  Google Scholar 

  35. Keating, P.N., Phys. Rev., 1966, vol. 149, no. 2, p. 674.

    Article  ADS  Google Scholar 

  36. Gufan, A.Yu., Kukin, O.V., Gufan, Yu.M., and Smolin, A.Yu., Phys. Solid State, 2012, vol. 54, 820.

    Article  ADS  Google Scholar 

  37. Gufan, A.Yu., Gufan, Yu.M., Novakovich, A.A., and Stepanenko, D.I., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 11, p. 1402.

    Article  Google Scholar 

  38. Ramji Rao, R. and Menon, C.S., J. Phys. Chem. Solids, 1974, vol. 35, no. 3, p. 425.

    Article  ADS  Google Scholar 

  39. Fisher, E.S., Manghnani, M.H., and Kikuta, R., J. Phys. Chem. Solids, 1973, vol. 34, 687.

    Article  ADS  Google Scholar 

  40. Wang, J., Yip, S., Phillpot, S., and Wolf, D., Phys. Rev. Lett., 1993, vol. 71, no. 25, p. 4182.

    Article  ADS  Google Scholar 

  41. Wang, J., Li, J., Yip, S., Phillpot, S., and Wolf, D., Phys. Rev. B, 1995, vol. 52, 12627.

    Article  ADS  Google Scholar 

  42. Wang, H. and Li, M., Phys. Rev. B, 2012, vol. 85, 104103.

    Article  ADS  Google Scholar 

  43. Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, London: Pitman, 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gufan.

Additional information

Original Russian Text © M.A. Gufan, Yu.M. Gufan, B.S. Karamurzov, A.A. Novakovich, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 6, pp. 844–856.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gufan, M.A., Gufan, Y.M., Karamurzov, B.S. et al. Limits of the stability of hexagonal phases upon uniaxial loading. Bull. Russ. Acad. Sci. Phys. 81, 768–778 (2017). https://doi.org/10.3103/S1062873817060119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873817060119

Navigation