Advertisement

Influence of the finiteness of particle velocity on the energy spectrum of cosmic rays in an anomalous diffusion model with Lévy flights

  • A. A. LagutinEmail author
  • V. N. Volkov
  • A. G. Tyumentsev
Proceedings of the 34th National Conference on Cosmic Rays
  • 17 Downloads

Abstract

An estimate of the influence the finiteness of particle velocity has on the results of a fractional differential (anomalous) model of cosmic ray propagation in the Galaxy with Lévy flights developed by the authors is considered. The results from Monte Carlo simulations of particle diffusion in random walk models with finite and infinite velocities are presented. It is shown that considering particle velocity finiteness has almost no effect on the cosmic ray energy spectrum obtained for E > 1 GeV in the anomalous diffusion model with Lévy flights for nearby young sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginzburg, V.L. and Syrovatskii, S.I., Proiskhozhdenie kosmicheskikh luchei (Origin of Cosmic Rays), Moscow: Izd. Akad. Nauk SSSR, 1963.Google Scholar
  2. 2.
    Berezinskii, V.S., Bulanov, S.V., Ginzburg, V.L, et al., Astrofizika kosmicheskikh luchei (Cosmic Ray Astrophysics), Ginzburg, V.L., Ed., Moscow: Nauka, 1990, 2nd ed.Google Scholar
  3. 3.
    Elmegreen, B.G. and Scalo, J., Annu. Rev. Astron. Astrophys., 2004, vol. 42, p. 211.ADSCrossRefGoogle Scholar
  4. 4.
    Bergin, E.A. and Tafalla, M., Annu. Rev. Astron. Astrophys., 2007, vol. 45, p. 339.ADSCrossRefGoogle Scholar
  5. 5.
    Sanchez, N. and Alfaro, E.J., Astrophys. J. Suppl. Ser., 2008, vol. 178, p. 1.ADSCrossRefGoogle Scholar
  6. 6.
    Efremov, Yu.N. and Chernin, A.D., Phys.-Usp., 2003, vol. 46, p. 1.ADSCrossRefGoogle Scholar
  7. 7.
    De la Fuente Marcos, R. and de la Fuente Marcos, C., Astrophys. J., 2009, vol. 700, p. 436.ADSCrossRefGoogle Scholar
  8. 8.
    Sanchez, N., Anez, N., Alfaro, E.J., et al., Astrophys. J., 2010, vol. 720, p. 541.ADSCrossRefGoogle Scholar
  9. 9.
    Lagutin, A.A., Nikulin, Yu.A., and Uchaikin, V.V., Break in the spectrum of cosmic rays as a consequence of fractality of the Galactic magnetic field, Preprint of Altai State Univ., Barnaul, 2000, no. AGU-2000/4.Google Scholar
  10. 10.
    Lagutin, A.A., Nikulin, Yu.A., and Uchaikin, V.V., Nucl. Phys. B (Proc. Suppl.), 2001, vol. 97, p. 267.ADSCrossRefGoogle Scholar
  11. 11.
    Lagutin, A.A. and Uchaikin, V.V., Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 201, p. 212.ADSCrossRefGoogle Scholar
  12. 12.
    Lagutin, A.A. and Tyumentsev, A.G., Izv. Altai. Gos. Univ., 2004, no. 5, p. 4.Google Scholar
  13. 13.
    Lagutin, A.A., Yushkov, A.V., and Tyumentsev, A.G., Int. J. Mod. Phys. A, 2005, vol. 20, p. 6834.ADSCrossRefGoogle Scholar
  14. 14.
    Lagutin, A.A., Volkov, N.V., Kuzmin, A.S., and Tyumentsev, A.G., Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 5, p. 581.CrossRefGoogle Scholar
  15. 15.
    Volkov, N., Lagutin, A., and Tyumentsev, A., J. Phys.: Conf. Ser., 2015, vol. 632, p. 012027.Google Scholar
  16. 16.
    Montroll, E.W. and Weiss, G.H., J. Math. Phys., 1965, vol. 6, p. 167.ADSCrossRefGoogle Scholar
  17. 17.
    Zolotarev, V.M., Uchaikin, V.V., and Saenko, V.V., J. Exp. Theor. Phys., 1999, vol. 88, no. 4, p. 780.ADSCrossRefGoogle Scholar
  18. 18.
    Zaburdaev, V.Yu. and Chukbar, K.V., J. Exp. Theor. Phys., 2002, vol. 94, no. 2, p. 252.ADSCrossRefGoogle Scholar
  19. 19.
    Shlesinger, M.F. and Klafter, J., Phys. Rev. Lett., 1985, vol. 54, p. 2551.ADSCrossRefGoogle Scholar
  20. 20.
    Klafter, J., Blumen, A., and Shlesinger, M.F., Phys. Rev. A, 1987, vol. 35, p. 3081.ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Blumen, A., Klafter, J., and Zumofen, G., Europhys. Lett., 1990, vol. 13, p. 223.ADSCrossRefGoogle Scholar
  22. 22.
    Samko, O.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and Derivatives of Fractional Order and Some of Their Applications), Minsk: Nauka i Tekhnika, 1987.zbMATHGoogle Scholar
  23. 23.
    Zolotarev, V.M., Odnomernye ustoichivye raspredeleniya (One-Dimensional Stable Distributions), Moscow: Nauka, 1983.zbMATHGoogle Scholar
  24. 24.
    Saichev, A.I. and Zaslavsky, G.M., Chaos, 1997, vol. 7, p. 753.ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Uchaikin, V.V. and Zolotarev, V., Chance and Stability, Utrecht: VSP, 1999.CrossRefzbMATHGoogle Scholar
  26. 26.
    Fulger, D., Scalas, E., and Germano, G., Phys. Rev. E, 2008, vol. 77, p. 021122.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Lagutin
    • 1
    Email author
  • V. N. Volkov
    • 1
  • A. G. Tyumentsev
    • 1
  1. 1.Altai State UniversityBarnaulRussia

Personalised recommendations