Advertisement

PAMELA spectrum of electrons and positrons of cosmic rays in the energy range of 0.05–1.2 TeV

  • A. A. Kvashnin
  • A. N. Kvashnin
  • Y. I. StozhkovEmail author
Proceedings of the 34th National Conference on Cosmic Rays
  • 24 Downloads

Abstract

A proprietary method is used to process measurement data from a high-energy particle (protons, electrons, and positrons with Е ≥ 50 GeV) spectrometer in a near-Earth orbit. The data from three detector systems are used: a tracker in a constant magnetic field (TRK), a calorimeter (CAL), and a neutron detector (ND). A relatively simple and efficient way of isolating electrons and positrons from the total charged particle flux entering the PAMELA spectrometer is proposed. A technique for determining the energy of isolated primary particles and retrieving their energy spectra is described. The composite electron and positron spectrum (below, the total electron and positron flux is referred to simply as the electron flux) for energies up to 1.5 TeV is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Picozza, P., et al. (PAMELA Collab.), Astropart. Phys., 2007, vol. 27, p. 296.ADSCrossRefGoogle Scholar
  2. 2.
    Bogomolov, A.V., et al., Otchet LFTI po teme PAMELA (Ioffe Institute Report on the PAMELA Project), St. Petersburg: Fiz.-Tekh. Inst., 2008.Google Scholar
  3. 3.
    Aharonian, F., et al., Phys. Rev. Lett., 2008, vol. 101, p. 261104.ADSCrossRefGoogle Scholar
  4. 4.
    Kobayashi, T., Komori, Y., and Yoshida, K., Astrophys. J., 2004, vol. 601, p. 340.ADSCrossRefGoogle Scholar
  5. 5.
    Ackermann, M., et al., Phys. Rev. D, 2010, vol. 82, p. 092004.ADSCrossRefGoogle Scholar
  6. 6.
    Aguilari, M., et al., Phys. Rev. Lett., 2014, vol. 113, p. 221102.ADSCrossRefGoogle Scholar
  7. 7.
    Adriani, O., et al., Phys. Rev. Lett., 2011, vol. 106, p. 201101.ADSCrossRefGoogle Scholar
  8. 8.
    Borisov, S.V., Boezio, M., Voronov, S.A., Galper, A.M., Jerse, G., Karelin, A.V., Mocchiutti, E., Picozza, P., Adriani, O., Bazilevskaya, G.A., Bellotti, R., Bonvicini, V., Bonechi, L., Bottai, S., Bruno, A., et al., Bull. Lebedev Phys. Inst., 2010, vol. 37, no. 6, p. 184.ADSCrossRefGoogle Scholar
  9. 9.
    Karelin, A.V., Borisov, S.V., Voronov, S.A., and Malakhov, V.V., Phys. At. Nucl., 2013, vol. 76, no. 6, p. 737.CrossRefGoogle Scholar
  10. 10.
    Karelin, A.V., Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., Bonechi, L., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Vacchi, A., Vannuccini, E., Vasilyev, G.I., et al., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 3, p. 289.CrossRefGoogle Scholar
  11. 11.
    Kawanaka, N., et al., Astrophys. J., 2011, vol. 729, p. 93.ADSCrossRefGoogle Scholar
  12. 12.
    Floricen, J.R., et al., Phys. Rev. D, 1976, vol. 13, p. 558.ADSCrossRefGoogle Scholar
  13. 13.
    Song, C. (HIRES Collab.), Proc. 27th Int. Cosmic Ray Conf., Hamburg, 2001, p. 490.Google Scholar
  14. 14.
    Kvashnin, A.A. and Stozhkov, Yu.I., Bull. Lebedev Phys. Inst., 2013, vol. 40, no. 1, p. 21.ADSCrossRefGoogle Scholar
  15. 15.
    Stozhkov, Yu.I., Viktorov, S.V., Kvashnin, A.A., Kvashnin, A.N., and Logachev, V.I., Bull. Lebedev Phys. Inst., 2016, vol. 43, no. 3, p. 102.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Kvashnin
    • 1
  • A. N. Kvashnin
    • 1
  • Y. I. Stozhkov
    • 1
    Email author
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations