Advertisement

Parametric analysis of Cherenkov light LDF from EAS in the range 30–3000 TeV for primary gamma rays and nuclei

  • A. Sh. M. ElshoukrofyEmail author
  • E. B. Postnikov
  • E. E. Korosteleva
  • L. G. Sveshnikova
  • H. A. Motaweh
Proceedings of the 34th National Conference on Cosmic Rays

Abstract

A simple “knee-like” approximation of the Lateral Distribution Function (LDF) of Cherenkov light emitted by EAS (extensive air showers) in the atmosphere is proposed for solving various tasks of data analysis in HiSCORE and other wide angle ground-based experiments designed to detect gamma rays and cosmic rays with the energy above tens of TeV. Simulation-based parametric analysis of individual LDF curves revealed that on the radial distance 20−500 m the 5-parameter “knee-like” approximation fits individual LDFs as well as a mean LDF with a very good accuracy. In this paper we demonstrate the efficiency and flexibility of the “knee-like” LDF approximation for various primary particles and shower parameters and the advantages of its application to suppressing proton background and selecting primary gamma rays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yashin, I.I., Astapov, I.I., Barbashina, N.S., et al., J. Phys.: Conf. Ser., 2016, vol. 675, p. 032037.Google Scholar
  2. 2.
    Prosin, V.V., Berezhnev, S.F., Budnev, N.M., et al., EPJ Web Conf., 2015, vol. 99, p. 04002.CrossRefGoogle Scholar
  3. 3.
    Berezhnev, S.F., Budnev, N.M., Büker, M., Brückner, M., Wischnewski, R., Gafarov, A.V., Gress, O.A., Gress, T., Dyachok, A.N., Epimakhov, S.N., Zagorodnikov, A.V., Zurbanov, V.L., Kalmykov, N.N., Karpov, N.I., Konstantinov, E.N., et al., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 3, p. 348.CrossRefGoogle Scholar
  4. 4.
    Karle, A., Merck, M., Plaga, R., et al., Astropart. Phys., 1995, vol. 3, p. 321.ADSCrossRefGoogle Scholar
  5. 5.
    Hampf, D., Tluczykont, M., and Horns, D., Nucl. Instrum. Methods Phys. Res., Sect. A, 2013, vol. 712, p. 137.ADSCrossRefGoogle Scholar
  6. 6.
    Heck, D., Knapp, J., Capdevielle, J.N., et al., CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Karlsruhe: Forschungszentrum Karlsruhe, 1998.Google Scholar
  7. 7.
    Hoerandel, J., Astropart. Phys., 2003, vol. 199, p. 193.ADSCrossRefGoogle Scholar
  8. 8.
    Korosteleva, E., Kuzmichev, L., Prosin, V., et al., Proc. 28th Int. Cosmic Ray Conf., Tsukuba, 2003, vol. 1, p. 89.ADSGoogle Scholar
  9. 9.
    Prosin, V.V., Berezhnev, S.F., Budnev, N.M., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2014, vol. 6, p. 94.ADSCrossRefGoogle Scholar
  10. 10.
    Al-Rubaiee, A.A., Al-Douri, Y., and Hashim, U., J. Astrophys., 2014, vol. 2014, p. 492814.CrossRefGoogle Scholar
  11. 11.
    Mishev, A., ISRN High Energy Phys., 2012, vol. 2012, p. 906358.CrossRefGoogle Scholar
  12. 12.
    McLachlan, G.J., Discriminant Analysis and Statistical Pattern Recognition, New York: Wiley, 1992.CrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. Sh. M. Elshoukrofy
    • 1
    • 2
    Email author
  • E. B. Postnikov
    • 1
  • E. E. Korosteleva
    • 1
  • L. G. Sveshnikova
    • 1
  • H. A. Motaweh
    • 2
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Faculty of ScienceDamanhour UniversityDamanhourEgypt

Personalised recommendations