Skip to main content
Log in

Microscopic theory of the second- and third-order elastic constants of cobalt in a thermodynamic module

  • Proceedings of the Interdisciplinary Symposium “Ordering in Minerals and Alloys” OMA-18 and Proceedings of the International Interdisciplinary Symposium “Order, Disorder, and Properties of Oxides” ODPO-18
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The total potential energy of a crystal is presented as an expansion by irreducible interactions in clusters containing pairs of atomic triplets and quadruplets. The potential energy of the clusters in the adiabatic approximation is a function of vectors \(\vec r_{ik}\) connecting the centers of atoms in the clusters. Arguments (basic functions) affecting the potential energy of clusters are found using the model with allowance for the exchange symmetry of atoms and the irreducibility of the considered energies of doublet, triplet, and quadruplet atoms and interactions. This allows us to present arguments of the potential energy in the form of summed integral numbers (latticed sums) multiplied by a fixed value of the crystal unit cell parameter, and to set the numerical values of the potential energy arguments as a function of vectors \(\vec r_{ik}\). A potential corresponding to the thermodynamic additivity concept of crystal energy is selected as the model potential of pairwise interaction. Secondand third-order moduli of the rigidity of Co crystals with A1, A2, and HCP structures are calculated using this model of multiatom interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, B., Wang, Y.A., and Carter, E.A., Phys. Rev. B, 2004, vol. 69, p. 125109.

    Article  ADS  Google Scholar 

  2. Methfessel, M., Rodrigues, C.O., and Andersen, O.K., Phys. Rev. B, 1989, vol. 40, no. 3, p. 2009.

    Article  ADS  Google Scholar 

  3. Smirnov, A.A., Molekulyarno-kineticheskaya teoriya metallov (Molecular-Kinetic Theory of Metals), Moscow: Nauka, 1966.

    Google Scholar 

  4. Hirschfelder, J.O., Curtis, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1964.

    Google Scholar 

  5. Gufan, A.Yu., Kukin, O.V., Gufan, Yu.M., and Smolin, A.Yu., Phys. Solid State, 2012, vol. 54, no. 4, p. 820.

    Article  ADS  Google Scholar 

  6. Gufan, A.Yu., Kukin, O.V., and Gufa., Yu.M., Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 9, p. 1141.

    Article  Google Scholar 

  7. Kukin, O.V., et al., Fazovye Perekhody, Uporyadochennye Sostoyaniya Nov. Mater., 2012, no. 12, p. 36. http://ptosnm.ru/ru/issue/2012/12/81.

    Google Scholar 

  8. Prinz, G.A., Phys. Rev. Lett., 1985, vol. 54, no. 10, p. 1051.

    Article  ADS  MathSciNet  Google Scholar 

  9. Bauer, R., Bischoff, E., and Mittemeijer, E.J., Phys. Rev. B, 2010, vol. 81, p. 094113.

    Article  ADS  Google Scholar 

  10. Gufan, Yu.M., Strukturnye fazovye perekhody (Structure Phase Transitions), Moscow: Nauka, 1982.

    Google Scholar 

  11. Gump, J., Hua, Xia., Chirita, M., Sooryakumar, R., Tomaz, M.A., and Harp, G.R., J. Appl. Phys., 1999, vol. 86, no. 11, p. 6005.

    Article  ADS  Google Scholar 

  12. Subramanian, S., Sooryakumar, R., Prinz, G.A., Jonker, B.T., and Idzerda, Y.U., Phys. Rev. B, 1994, vol. 49, no. 24, p. 17319.

    Article  ADS  Google Scholar 

  13. Weston, W.F. and Granato, A.V., Phys. Rev. B, 1975, vol. 12, no. 12, p. 5355.

    Article  ADS  Google Scholar 

  14. Strauss, B., Frey, F., Petry, W., Trampenau, J., Nicolaus, K., Shapiro, S.M., and Bossy, J., Phys. Rev. B, 1996, vol. 33, p. 7852.

    Google Scholar 

  15. Bennett, B.W. and Shannette, G.W., Acoust. Lett., 1980, vol. 4, p. 99.

    Google Scholar 

  16. Guo, G.Y. and Wang, H.H., Chin. J. Phys., 2000, vol. 38, no. 5, p. 948.

    Google Scholar 

  17. McSkimin, H.J., J. Appl. Phys., 1955, vol. 26, no. 4, p. 406.

    Article  ADS  Google Scholar 

  18. Antonangeli, D., Krisch, M., Figuet, G., Farber, D.L., Aracne, C.M., Badro, J., Occelli, F., and Requardt, H., Phys. Rev. Lett., 2004, vol. 93, no. 21, p. 215505.

    Article  ADS  Google Scholar 

  19. Kittel, C., Introduction to Solid State Physics, John Wiley and Sons, 2005.

    MATH  Google Scholar 

  20. Sarma, V.P. and Reddy, P.J., Phys. Status Solidi A, 1973, vol. 16, p. 413.

    Article  ADS  Google Scholar 

  21. Johal, A.S. and Dunstan, D.J., Phys. Rev. B, 2006, vol. 73, p. 024106.

    Article  ADS  Google Scholar 

  22. McSkimin, H.J., J. Appl. Phys., 1955, vol. 26, no. 4, p. 406.

    Article  ADS  Google Scholar 

  23. Antonangeli, D., Krisch, M., Figuet, G., Farber, D.L., Aracne, C.M., Badro, J., Occelli, F., and Requardt, H., Phys. Rev. Lett., 2004, vol. 93, no. 21, p. 215505.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Gufan.

Additional information

Original Russian Text © O.V. Kukin, Yu.M. Gufan, G.V. Fomin, I.A. Osipenko, E.N. Klimova, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 6, pp. 777–783.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukin, O.V., Gufan, Y.M., Fomin, G.V. et al. Microscopic theory of the second- and third-order elastic constants of cobalt in a thermodynamic module. Bull. Russ. Acad. Sci. Phys. 80, 707–713 (2016). https://doi.org/10.3103/S1062873816060198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816060198

Navigation