Skip to main content
Log in

Numerical investigation of the microstructure of a clad layer produced via laser cladding with coaxial metal powder injection

  • Proceedings of the XI Conference “Lasers and Laser Information Technologies: Fundamental Problems and Applications”
  • 1. Laser Nanoengineering
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The microstructure of a clad layer produced via selective laser cladding with coaxial metal powder injection is studied numerically. The Johnson–Mehl–Avrami–Kolmogorov equation for condensed systems with inhomogeneous rates of nucleation is used to model the phase change kinetics. The impact of the substrate boundary along with interconnected heat transfer and phase change processes on the final microstructure of a built-up layer is demonstrated. The qualitative difference between the behavior of the temperature on the built-up layer’s surface and at the depth of the substrate is established, revealing the inhomogeneous microstructure of the final layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gladush, G.G. and Smurov, I., Physics of Laser Materials Processing, Berlin, Heidelberg Springer-Verlag, 2011.

    Book  Google Scholar 

  2. Shishkovskii, I.V., Lazernyi sintez funktsional’nykh mezostruktur i ob”emnykh izdelii (Laser Synthesis of Functional Mesostructures and Volumetric Samples), Moscow Fizmatlit, 2009.

    Google Scholar 

  3. Pei, Y.T. and De Hosson, J.T.M., Acta Mater., 2000, vol. 48, p. 2617.

    Article  Google Scholar 

  4. Dinda, G.P., Dasgupta, A.K., and Mazumder, J., Surf. Coat. Technol., 2012, vol. 206, p. 2152.

    Article  Google Scholar 

  5. Hoadley, A.F.A. and Rappaz, M., Metall. Trans. B, 1992, vol. 23, p. 631.

    Article  Google Scholar 

  6. Grishaev, R.V., Mirzade, F.Kh., and Khomenko, M.D., Perspekt. Mater., 2011, vol. 10, p. 135.

    Google Scholar 

  7. Grishaev, R.V., Mirzade, F.Kh., and Khomenko, M.D., Perspekt. Mater., 2013, vol. 14, p. 241.

    Google Scholar 

  8. He, X. and Mazumder, J., J. Appl. Phys., 2007, vol. 101, p. 053113.

    Article  ADS  Google Scholar 

  9. Wen, S. and Shin, Y.C., J. Appl. Phys., 2010, vol. 108, p. 044908.

    Article  ADS  Google Scholar 

  10. Qi, H., Mazumder, J., and Ki, H., J. Appl. Phys., 2006, vol. 100, p. 024903.

    Article  ADS  Google Scholar 

  11. Cao, Y. and Choi, J., J. Laser Appl., 2006, vol. 18, no. 3, p. 245.

    Article  ADS  Google Scholar 

  12. Mirzade, F.Kh., Niziev, V.G., Panchenko, V.Y., et al., Phys. B: Condens. Matter, 2013, vol. 423, p. 69.

    Article  ADS  Google Scholar 

  13. Christian, J.W., The Theory of Transformations in Metals and Alloys, Oxford Elsevier Sci., 2002.

    Google Scholar 

  14. Belen’kii, V.Z., Geometriko-veroyatnostnye modeli kristallizatsii (Geometrical-Probabilistic Models of Crystallization), Moscow Nauka, 1980.

    Google Scholar 

  15. Skripov, V.P. and Koverda, V.P., Spontannaya kristallizatsiya pereokhlazhdennykh zhidkostei (Spontaneous Crystallization of Supercooled Liquids), Moscow Nauka, 1984.

    Google Scholar 

  16. Grishaev, R.V., Mirzade, F.Kh., Niz’ev, V.G., Panchenko, V.Ya., and Khomenko, M.D., Fiz. Khim. Obrab. Mater., 2013, vol. 1, p. 12.

    Google Scholar 

  17. Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, New York Springer-Verlag, 2003.

    Book  MATH  Google Scholar 

  18. Sessa, V., Fanfoni, M., and Tomellini, M., Phys. Rev. B, 1996, vol. 54, no. 2, p. 836.

    Article  ADS  Google Scholar 

  19. Ramos, R.A., Rikvold, P.A., and Novotny, M.A., Phys. Rev. B, 1999, vol. 59, p. 9053.

    Article  ADS  Google Scholar 

  20. Muller, R., Zanotto, E.D., and Fokin, V.M., J. NonCryst. Solids, 2000, vol. 274, p. 208.

    Article  ADS  Google Scholar 

  21. Weinberg, M.C., Birnie, D.P. III, and Shneidman, V.A., J. Non-Cryst. Solids, 1997, vol. 219, p. 89.

    Article  ADS  Google Scholar 

  22. Crespo, D. and Pradell, T., Phys. Rev. B, 1996, vol. 54, no. 5, p. 3101.

    Article  ADS  Google Scholar 

  23. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermal and Physical Properties of Metals under High Temperatures), Moscow Metallurgiya, 1989.

    Google Scholar 

  24. Gale, W.F. and Totemeier, T.C., Smithell’s Metals Reference Book, London Elsevier, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Khomenko.

Additional information

Original Russian Text © M.D. Khomenko, V.Ya. Panchenko, V.G. Niziev, F.Kh. Mirzade, R.V. Grishaev, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 4, pp. 422–427.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomenko, M.D., Panchenko, V.Y., Niziev, V.G. et al. Numerical investigation of the microstructure of a clad layer produced via laser cladding with coaxial metal powder injection. Bull. Russ. Acad. Sci. Phys. 80, 381–386 (2016). https://doi.org/10.3103/S1062873816040201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816040201

Keywords

Navigation