• Proceedings of the LXV International Conference “Nuclei 2015: New Horizons in Nuclear Physics, Nuclear Power Engineering, and Femto- and Nanotechnologies” (LXV International Meeting on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:

Monte Carlo event generators for NICA/MPD and CBM experiments


An improved version of the Glauber Monte Carlo simulation program is proposed that allows on to estimate the geometric properties of nucleus–nucleus interactions in energy range \(\sqrt {{S_{NN}}} \) of 5 GeV to 20 TeV. It is shown that the geometric properties of interactions at energies of 5–10 GeV (NICA/MPD and CBM) are quite close to those at an energy of 200 GeV (RHIC). The geometric properties can be derived from experimentally observable quantities using different techniques. The most promising of these is the registration of spectator neutrons from nuclear residuals. It is shown that event generators predict different multiplicities of produced neutrons. The registration of neutrons will be a great step in our understanding of the decay of nuclei in highly excited states.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bass, S.A., et al., Prog. Part. Nucl. Phys., 1998, vol. 41, p. 225.

    ADS  Article  Google Scholar 

  2. 2.

    Bleicher, M., et al., J. Phys. G, 1999, vol. 25, p. 1859.

    ADS  Article  Google Scholar 

  3. 3.

    Kaidalov, A.B., Phys. Lett. B, 1982, vol. 116, p. 459.

    ADS  Article  Google Scholar 

  4. 4.

    Kaidalov, A.B. and Ter-Martirosyan, K.A., Phys. Lett. B, 1982, vol. 117, p. 247.

    ADS  Article  Google Scholar 

  5. 5.

    Capella, A., Sukhatme, U., Tan, C.I., and Tran Thanh Van, J., Phys. Rep., 1994, vol. 236, p. 227.

    ADS  Article  Google Scholar 

  6. 6.


  7. 7.

    Mashnik, S.G., Gudima, K.K., Moskalenko, I.V., Prael, R.E., and Sierk, A.J., Adv. Space Res., 2004, vol. 34, p. 1288.

    ADS  Article  Google Scholar 

  8. 8.


  9. 9.

    Andersson, B., et al., Nucl. Phys. B, 1987, vol. 281, p. 289.

    ADS  Article  Google Scholar 

  10. 10.

    Nilsson-Almquist, B. and Stenlund, E., Comput. Phys. Commun., 1987, vol. 43, p. 387.

    ADS  Article  Google Scholar 

  11. 11.

    Miller, M.L., Reygers, K., Sanders, S.J., and Steinberg, P., Annu. Rev. Nucl. Part. Sci., 2007, vol. 57, p. 205.

    ADS  Article  Google Scholar 

  12. 12.

    Alver, B., Baker, M., Loizides, C., and Steinberg, P., arXiv:nucl-exp/0805.4411.

  13. 13.

    Zadorozhny, A.M., Uzhinsky, V.V., and Shmakov, S.Yu., Sov. J. Nucl. Phys., 1984, vol. 39, p. 729.

    Google Scholar 

  14. 14.

    Zadorozhny, A.M., Uzhinsky, V.V., and Shmakov, S.Yu., Comput. Phys. Commun., 1989, vol. 54, p. 125.

    ADS  Article  Google Scholar 

  15. 15.

    Ding, L.-K. and Stenlund, E., Comput. Phys. Commun., 1990, vol. 59, p. 313.

    ADS  Article  Google Scholar 

  16. 16.

    Broniowski, W., Rybczynski, M., and Bozek, P., Comput. Phys. Commun., 2009, vol. 180, p. 69.

    ADS  Article  Google Scholar 

  17. 17.

    Uzhinsky, V.V. and Galoyan, A., JETP Lett., 2011, vol. 94, p. 499.

    ADS  Article  Google Scholar 

  18. 18.

    Uzhinsky, V.V. and Galoyan, A., arXiv:hep-ph/ 1111.4984; Uzhinsky, V.V. and Galoyan, A., arXiv:hepph/1210.7338.

  19. 19.

    Chamon, L.C., et al., Phys. Rev. C, 2002, vol. 66, p. 014610.

    ADS  Article  Google Scholar 

  20. 20.

    Galoyan, A.S. and Uzhinsky, V.V., Phys. Part. Nucl. Lett., 2015, vol. 12, p. 166.

    Article  Google Scholar 

  21. 21.

    ALICE Collab., CERN-PH-EP-2012-368, 2012.

  22. 22.

    Galoyan, A.S., Ribon, A., and Uzhinsky, V.V., JETP Lett., 2015, vol. 102, no. 6, p. 324.

    ADS  Article  Google Scholar 

  23. 23.

    Yurevich, V.I., Yakovlev, R.M., and Lyapin, V.G., Phys. At. Nucl., 2012, vol. 75, p. 192.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Galoyan.

Additional information

Original Russian Text © A.S. Galoyan, V.V. Uzhinsky, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 3, pp. 368–372.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galoyan, A.S., Uzhinsky, V.V. Monte Carlo event generators for NICA/MPD and CBM experiments. Bull. Russ. Acad. Sci. Phys. 80, 333–337 (2016). https://doi.org/10.3103/S1062873816030138

Download citation


  • Monte Carlo Model
  • Nucleus Interaction
  • Monte CARLO Event Generator
  • Compressed Baryonic Matter
  • Forward Detector