Advertisement

Influence of high-frequency electromagnetic radiation on the de Haas–van Alphen effect in graphene

  • S. V. Kryuchkov
  • E. I. Kukhar’Email author
  • P. V. Nazarov
Proceedings of the XV All-Russian Seminar “Physics and the Application of Microwaves”
  • 57 Downloads

Abstract

The differential magnetic susceptibility of graphene exposed to high-frequency electromagnetic radiation is calculated. The period of the quantum oscillations of magnetic susceptibility is determined for low temperatures. The period of such oscillations is shown to depend on the amplitude of the electromagnetic radiation.

Keywords

Magnetic Susceptibility Magnetic Field Intensity Quantum Oscillation Alphen Electron Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurganova, E.V., Wiedmann, S., Giesbers, A.J.M., et al., Phys. Rev. B, 2013, vol. 87, p. 085447.ADSCrossRefGoogle Scholar
  2. 2.
    Kim, Y., Poumirol, J.M., Lombardo, A., et al., Phys. Rev. Lett., 2013, vol. 110, p. 227402.ADSCrossRefGoogle Scholar
  3. 3.
    Titov, M., Gorbachev, R.V., Narozhny, B.N., et al., Phys. Rev. Lett., 2013, vol. 111, p. 166601.ADSCrossRefGoogle Scholar
  4. 4.
    Yu, G.L., Gorbachev, R.V., Tu, J.S., et al., Nat. Phys., 2014, vol. 10, p. 525.CrossRefGoogle Scholar
  5. 5.
    Gorbachev, R.V., Song, J.C.W., Yu, G.L., et al., Science, 2014, vol. 346, p. 448.ADSCrossRefGoogle Scholar
  6. 6.
    Bolmatov, D. and Mou, Ch.-Y., Phys. B, 2010, vol. 405, p. 2896.ADSCrossRefGoogle Scholar
  7. 7.
    Apalkov, V.M. and Chakraborty, T., Phys. Rev. Lett., 2014, vol. 112, p. 176401.ADSCrossRefGoogle Scholar
  8. 8.
    Falkovsky, L.A., Phys.-Usp., 2008, vol. 51, p. 887.ADSCrossRefGoogle Scholar
  9. 9.
    Wallace, P.R., Phys. Rev., 1947, vol. 71, p. 622.ADSCrossRefGoogle Scholar
  10. 10.
    Zav’yalov, D.V., Konchenkov, V.I., and Kryuchkov, S.V., Phys. Solid State, 2010, vol. 52, p. 800.CrossRefGoogle Scholar
  11. 11.
    Apalkov, V.M. and Chakraborty, T., Phys. Rev. Lett., 2011, vol. 107, p. 186803.ADSCrossRefGoogle Scholar
  12. 12.
    Patel, A.A., Davies, N., Cheianov, V., et al., Phys. Rev. B, 2012, vol. 86, p. 081413(R).ADSCrossRefGoogle Scholar
  13. 13.
    Apalkov, V.M. and Chakraborty, T., Phys. Rev. B, 2012, vol. 86, p. 035401.ADSCrossRefGoogle Scholar
  14. 14.
    Gusynin, V.P. and Sharapov, S.G., Phys. Rev. B, 2005, vol. 71, p. 125124.ADSCrossRefGoogle Scholar
  15. 15.
    Tahir, M. and Sabeeh, K., Phys. Rev. B, 2008, vol. 77, p. 195421.ADSCrossRefGoogle Scholar
  16. 16.
    Kryuchkov, S.V. and Kukhar’, E.I., Phys. Solid State, 2012, vol. 54, p. 202.ADSCrossRefGoogle Scholar
  17. 17.
    Mani, R.G., Smet, J.H., von Klitzing, K., et al., Nature, 2002, vol. 420, p. 646.ADSCrossRefGoogle Scholar
  18. 18.
    Dmitriev, I.A., Vavilov, M.G., Aleiner, I.L., et al., Phys. Rev. B, 2005, vol. 71, p. 115316.ADSCrossRefGoogle Scholar
  19. 19.
    Kvon, Z.D., Kozlov, D.A., Danilov, S.N., et al., JETP Lett., 2013, vol. 97, p. 41.ADSCrossRefGoogle Scholar
  20. 20.
    Calvo, H.L., Pastawski, H.M., Roche, S., et al., Appl. Phys. Lett., 2011, vol. 98, p. 232103.ADSCrossRefGoogle Scholar
  21. 21.
    Gu, Z., Fertig, H.A., Arovas, D.P., et al., Phys. Rev. Lett., 2011, vol. 107, p. 216601.ADSCrossRefGoogle Scholar
  22. 22.
    Busl, M., Platero, G., and Jauho, A.-P., Phys. Rev. B, 2012, vol. 85, p. 155449.ADSCrossRefGoogle Scholar
  23. 23.
    Kryuchkov, S.V., Kukhar’, E.I., and Nikitina, O.S., J. NanoElectron. Phys., 2013, vol. 5, p. 03005.Google Scholar
  24. 24.
    Syzranov, S.V., Rodionov, Ya.I., Kugel, K.I., et al., Phys. Rev. B, 2013, vol. 88, p. 241112.ADSCrossRefGoogle Scholar
  25. 25.
    Kryuchkov, S.V. and Kukhar’, E.I., Phys. B, 2014, vol. 445, p. 93.ADSCrossRefGoogle Scholar
  26. 26.
    Kryuchkov, S.V., Kukhar’, E.I., and Nikitina, O.S., Phys. Wave Phenom., 2014, vol. 22, p. 25.ADSCrossRefGoogle Scholar
  27. 27.
    Fukuyama, H., Fuseya, Y., Ogata, M., et al., Phys. B, 2012, vol. 407, p. 1943.ADSCrossRefGoogle Scholar
  28. 28.
    Ghazaryan, A., Chakraborty, T., and Pietilainen, P., J. Phys.: Condens. Matter, 2015, vol. 27, p. 185301.ADSGoogle Scholar
  29. 29.
    Sharapov, S.G., Gusynin, V.P., and Beck, H., Phys. Rev. B, 2004, vol. 69, p. 075104.ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, S., Ma, N., and Zhang, E., J. Phys.: Condens. Matter, 2010, vol. 22, p. 115302.ADSGoogle Scholar
  31. 31.
    Heße, L. and Richter, K., Phys. Rev. B, 2014, vol. 90, p. 205424.ADSCrossRefGoogle Scholar
  32. 32.
    Tabert, C.J., Carbotte, J.P., and Nicol, E.J., Phys. Rev. B, 2015, vol. 91, p. 035423.ADSCrossRefGoogle Scholar
  33. 33.
    Kryuchkov, S.V., Kukhar’, E.I., and Zav’yalov, D.V., Phys. Wave Phenom., 2013, vol. 21, p. 207.ADSCrossRefGoogle Scholar
  34. 34.
    Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika. Chast’ 1 (Statistical Physics. Part 1), Moscow: Fizmatlit, 2002.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
    • 2
  • E. I. Kukhar’
    • 1
    Email author
  • P. V. Nazarov
    • 1
  1. 1.Physical Laboratory of Low-Dimensional SystemsVolgograd State Socio-Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations