Advertisement

Spectral, space–energy, and polarization characteristics of laser diodes with lasing wavelengths of 530 nm

  • V. V. BliznyukEmail author
  • N. V. Berezovskaya
  • V. A. Parshin
  • I. S. Gadaev
  • O. I. Koval
  • A. G. Rzhanov
  • G. A. Solovyev
Proceedings of the XV All-Russian Seminar “Physics and the Application of Microwaves” (Waves 2015) Named after Prof. A.P. Sukhorukov

Abstract

The characteristics of laser diodes (LDs) with quantum-well (QW) InGaN layers with lasing wavelengths of 530 nm are studied experimentally. It is shown that the LD radiation contrast at the initial phase of operation is quite low (it does not exceed 0.85). It is found that the time dependences of radiation contrast and spectrum become apparent after just 300 h of operation, and the radiation power starts to fall after 1200–1300 h of operation.

Keywords

Active Layer Quantum Well Heavy Hole Stokes Parameter Polarization Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casey, H.C. and Panish, M.B., Heterostructure Lasers: Fundamental Principles, Acad. Press, 1978Google Scholar
  2. 2.
    Bogdankevich, O.V., Darznek, S.A., and Eliseev, P.G., Poluprovodnikovye lazery (Semiconductor Lasers), Moscow: Nauka, 1976, pp. 175–185.Google Scholar
  3. 3.
    Eliseev, P.G., Quantum Electron., 2002, vol. 32, no. 12, p. 1085.ADSCrossRefGoogle Scholar
  4. 4.
    D’yachkov, N.V. and Bogatov, A.P., Quantum Electron., 2011, vol. 41, no. 10, p. 869.ADSCrossRefGoogle Scholar
  5. 5.
    GOST R ISO (Russian State Standard ISO) 120052013: Laser and Laser-Related Equipment. Test Methods for Laser Beam Parameters. Polarization, 2013.Google Scholar
  6. 6.
    ISO 12005:2003: Laser and Laser-Related Equipment–Test Methods for Laser Beam Parameters–Polarization, 2003.Google Scholar
  7. 7.
    Bliznyuk, V.V., Belyaeva, E.V., Eremin, A.N., et al., Sbornik dokladov 20-oi mezhdunar. konf. “Lazery. Izmereniya. Informatsiya–2010” (Proc. 20th Int. Conf. “Lasers. Measurements. Information–2010”), St. Petersburg: S.-Peterb. Politekh. Univ., 2010, vol. 1, pp. 161–169.Google Scholar
  8. 8.
    Berezovskaya, N.V., Bliznyuk, V.V., Brit, M.A., et al., Sbornik dokladov 24-oi mezhdunar. konf. “Lazery. Izmereniya. Informatsiya-2014” (Proc. 24th Int. Conf. “Lasers. Measurements. Information–2014”), St. Petersburg: S.-Peterb. Politekh. Univ., 2014, vol. 1, pp. 30–38.Google Scholar
  9. 9.
    Ueno, M., Yoshizumi, Y., Enya, Y., et al., J. Cryst. Growth, 2011, vol. 315, p. 258.ADSCrossRefGoogle Scholar
  10. 10.
    Fizika poluprovodnikovykh lazerov (Physics of Semiconductor Lasers), Takuma, H., Ed., Moscow: Mir, 1989, pp. 75–84.Google Scholar
  11. 11.
    Adachi, M., Jpn. J. Appl. Phys., 2014, vol. 53, p. 100207–1.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • V. V. Bliznyuk
    • 1
    Email author
  • N. V. Berezovskaya
    • 1
  • V. A. Parshin
    • 1
  • I. S. Gadaev
    • 1
  • O. I. Koval
    • 1
  • A. G. Rzhanov
    • 2
  • G. A. Solovyev
    • 1
  1. 1.Moscow Power Engineering InstituteNational Research UniversityMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations