Advertisement

Conductivity and higher current density harmonics of a gap graphene modification in the presence of constant and alternating electric fields

  • P. V. BadicovaEmail author
  • S. Yu. Glazov
Proceedings of the XV All-Russian Seminar “Physics and the Application of Microwaves” (Waves 2015) Named after Prof. A.P. Sukhorukov

Abstract

The response of a gap graphene modification to external constant and alternating electric fields is studied. The electron system is characterized using the kinetic Boltzmann equation in an approximation of a constant relaxation time. The dependence of the constant component and the amplitude of higher harmonics of current density on the parameters of the applied fields is analyzed. The results are compared to ones available for graphene-based structures.

Keywords

Electric Field Intensity Constant Component Constant Electric Field Constant Relaxation Time Kinetic Boltzmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., et al., Rev. Mod. Phys., 2009, vol. 81, p. 109.ADSCrossRefGoogle Scholar
  2. 2.
    Zhou, S.Y., Gweon, G.-H., Fedorov, A.V., et al., Nat. Mater., 2007, vol. 6, no. 10, p. 770.ADSCrossRefGoogle Scholar
  3. 3.
    Giovannetti, G., Khomyakov, P.A., Brocks, G., et al., Phys. Rev. B, 2007, vol. 76, p. 073103.ADSCrossRefGoogle Scholar
  4. 4.
    Elias, D.S., Nair, R.R., Mohiuddin, T.M.G., et al., Science, 2009, vol. 323, p. 610.ADSCrossRefGoogle Scholar
  5. 5.
    Das Sarma, A.S.S., Hwang, E.H., et al., Rev. Mod. Phys., 2011, vol. 83, no. 2, p. 407.ADSCrossRefGoogle Scholar
  6. 6.
    Abergel, D.S.L. and Chakraborty, T., Nanotecnology, 2011, vol. 22, p. 015203.ADSCrossRefGoogle Scholar
  7. 7.
    Mikhailov, S.A., Europhys. Lett., 2007, vol. 79, p. 27002.ADSCrossRefGoogle Scholar
  8. 8.
    Maksimenko, A.S. and Slepyan, G.Ya., Phys. Rev. Lett., 2000, vol. 84, no. 2, p. 362.ADSCrossRefGoogle Scholar
  9. 9.
    Belonenko, M.B., Glazov, S.Yu., and Meshcheryakova, N.E., Fiz. Tekh. Poluprovodn., 2010, vol. 44, no. 9, p. 1248.Google Scholar
  10. 10.
    Sadykov, N.R. and Scorkin, N.A., Fiz. Semiconductors, 2012, vol. 46, no. 2, p. 159.ADSCrossRefGoogle Scholar
  11. 11.
    Dean, J.J. and van Driel, H.M., Appl. Phys. Lett., 2009, vol. 95, p. 261910.ADSCrossRefGoogle Scholar
  12. 12.
    Dean, J.J. and van Driel, H.M., Phys. Rev. B, 2010, vol. 82, p. 125411.ADSCrossRefGoogle Scholar
  13. 13.
    Glazov, M.M., JETP Lett., 2011, vol. 93, no. 7, p. 408.CrossRefGoogle Scholar
  14. 14.
    Belonenko, M.B., Glazov, S.Yu., and Meshcheryakova, N.E., Opt. Spectrosc., 2010, vol. 108, no. 5, p. 774.ADSCrossRefGoogle Scholar
  15. 15.
    Glazov, S.Yu. and Meshcheryakova, N.E., Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 1, p. 64.Google Scholar
  16. 16.
    Glazov, S.Yu., Meshcheryakova, N.E., and Martynov, D.V., Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, no. 12, p. 1319.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Volgograd State Sociopedagogical UniversityVolgogradRussia

Personalised recommendations