Chaos and its suppression in a system of two coupled Rydberg atoms

  • A. V. AndreevEmail author
  • O. I. Moskalenko
  • A. A. Koronovskii
  • A. E. Hramov
Proceedings of the XV All-Russian Seminar “Physics and the Application of Microwaves” (Waves 2015) Named after Prof. A.P. Sukhorukov


The nonlinear behavior and chaos in a system of two coupled Rydberg atoms is investigated. A map of the regimes in which oscillations with different periods are plotted is produced, and the chaotic behavior of the system is revealed. A procedure for suppressing chaos in the system by means of an external parametric effect is presented.


Lyapunov Exponent Bifurcation Diagram External Effect Chaotic Behavior Rabi Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaksch, D., Cirac, J.I., Zoller, P., et al., Phys. Rev. Lett., 2000, vol. 85, p. 2208.ADSCrossRefGoogle Scholar
  2. 2.
    Zagoskin, A.M., Quantum Engineering: Theory and Design of Quantum Coherent Structures, Cambridge: Univ. Press, 2011.CrossRefGoogle Scholar
  3. 3.
    Weimer, H., Löw, R., Pfau, T., et al., Phys. Rev. Lett., 2008, vol. 101, p. 250601.ADSCrossRefGoogle Scholar
  4. 4.
    Heidemann, R., Raitzsch, U., Bendkowsky, V., et al., Phys. Rev. Lett., 2007, vol. 99, p. 163601.ADSCrossRefGoogle Scholar
  5. 5.
    Greenland, P.T., Lynch, S.A., van der Meer, A.F.G., et al., Nature, 2010, vol. 465, p. 1057.ADSCrossRefGoogle Scholar
  6. 6.
    Gaëtan, A., Miroshnychenko, Y., Wilk, T., et al., Nat. Phys., 2009, vol. 5, p. 115.CrossRefGoogle Scholar
  7. 7.
    Schwarzschild, B., Phys. Today, 2009, vol. 62, p. 15.CrossRefGoogle Scholar
  8. 8.
    Saffman, M. and Walker, T.G., Rev. Mod. Phys., 2010, vol. 82, p. 2313.ADSCrossRefGoogle Scholar
  9. 9.
    Lee, T.E., Haffner, H., and Cross, M.C., Phys. Rev. A, 2011, vol. 84, p. 031402(R).ADSCrossRefGoogle Scholar
  10. 10.
    Kuznetsov, S.P., Dinamicheskii khaos (Dynamical Chaos), Moscow: Fizmatlit, 2006.Google Scholar
  11. 11.
    Mirus, K.A. and Sprott, J.C., Phys. Rev. E, 1999, vol. 59, p. 5313.ADSCrossRefGoogle Scholar
  12. 12.
    Egorov, E.N. and Koronovskii, A.A., Tech. Phys. Lett., 2004, vol. 30, no. 3, p. 186.ADSCrossRefGoogle Scholar
  13. 13.
    Pyragas, K., Phys. Rev. E, 1997, vol. 56, no. 5, p. 5183.ADSCrossRefGoogle Scholar
  14. 14.
    Hramov, A.E. and Koronovskii, A.A., Phys. Rev. E, 2005, vol. 71, no. 6, p. 067201.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. V. Andreev
    • 1
    Email author
  • O. I. Moskalenko
    • 1
    • 2
  • A. A. Koronovskii
    • 1
    • 2
  • A. E. Hramov
    • 1
    • 2
  1. 1.Department of Open System Physics, Faculty of Nonlinear ProcessesSaratov State UniversitySaratovRussia
  2. 2.Gagarin State Technical UniversitySaratovRussia

Personalised recommendations