Skip to main content
Log in

Doped CdTe-based quantum dots

  • Proceedings of the International Symposium “Ordering in Minerals and Alloys” OMA-17 and Proceedings of the International Symposium “Order, Disorder, and Properties of Oxides” ODPO-17
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Colloidal semiconductor CdTe-based quantum dots are investigated. An ab initio computer design of quantum dots based on nanoparticles of CdTe and CdTe doped with atoms of transition elements (Co, Mn) is executed. Partial densities of the electron states of the investigated quantum dots are calculated. The sensitivity of X-ray absorption near edge structure (XANES) spectroscopy for verifying the parameters of the nanoscale atomic structure of small quantum dots based on CdTe, and for determining the parameters of the local environment around cadmium atoms and doping atoms in quantum dots was proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cadmium Telluride Quantum Dots. Advances and Applications, Donegan, J. and Rakovich, Y., Eds., New York: Taylor & Francis, 2013.

    Google Scholar 

  2. Thi Dieu Thuy Ung, Thi Kim Chi Tran, Thu Nga Pham, Duc Nghia Nguyen, Duy Khang Dinh, and Quang Liem Nguye, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, vol. 3, p. 043001.

    ADS  Google Scholar 

  3. Ung Thi Dieu Thuy, Pham Song Toan, Tran Thi Kim Chi, Dinh Duy Khang, and Nguyen Quang Liem, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2010, vol. 1, p. 045009.

    Google Scholar 

  4. Chiang, W.-Y., Okuhata, T., Usman, A., Tamai, N., and Masuhara, H., J. Phys. Chem. B, 2014, vol. 118, no. 49, p. 14010.

    Article  Google Scholar 

  5. Seal, P., Sen, S., and Chakrabarti, S., Chem. Phys., 2010, vol. 367, p. 152.

    Article  ADS  Google Scholar 

  6. Sriram, S. and Chandiramouli, R., Res. Chem. Intermed., 2015, vol. 41, no. 4, p. 2095. doi 10.1007/s11164-0131334-6

    Article  Google Scholar 

  7. Alnemrat, S., Park, Y.H., and Vasiliev, I., Phys. E, 2014, vol. 57, p. 96.

    Article  Google Scholar 

  8. Lin, X., Xu, Sh., Wang, Ch., Wanga, Zh., and Cui, Y., RSC Adv., 2014, vol. 4, p. 4993.

    Article  Google Scholar 

  9. Dhayal, S.S., Ramaniah, L.M., Ruda, H.E., and Nair, S.V., J. Chem. Phys., 2014, vol. 141, p. 204702.

    Article  ADS  Google Scholar 

  10. Groeneveld, E., Delerue, Ch., Allan, G., et al., J. Phys. Chem., 2012, vol. 116, p. 23160.

    Google Scholar 

  11. Al-Douri, Y., Baaziz, H., Charifi, Z., et al., Renewable Energy, 2012, vol. 45, p. 232.

    Article  Google Scholar 

  12. Haram, S.K., Kshirsagar, A., Gujarathi, Y.D., et al., J. Phys. Chem., 2011, vol. 115, p. 6243.

    Article  Google Scholar 

  13. Kuznetsov, A.E. and Beratan, D.E., J. Phys. Chem., 2014, vol. 118, p. 7094.

    Google Scholar 

  14. Azpiroz, J.M., Ugalde, J.M., and Infante, I., J. Chem. Theory Comput., 2013, vol. 10, no. 1, p. 76.

    Article  Google Scholar 

  15. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., et al., J. Comput. Chem., 2001, vol. 22, p. 931.

    Article  Google Scholar 

  16. Rabadanov, M.Kh., Verin, I.A., Ivanov, Yu.M., and Smirnov, V.I., Crystallogr. Rep., 2001, vol. 46, no. 4, p. 636.

    Article  ADS  Google Scholar 

  17. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1457.

    Article  Google Scholar 

  18. Bryleva, M.A., Kravtsova, A.N., Shcherbakov, I.N., et al., J. Struct. Chem., 2012, vol. 53, no. 2, p. 295.

    Article  Google Scholar 

  19. Evsyukova, M.A., Kravtsova, A.N., Shcherbakov, I.N., et al., J. Struct. Chem., 2010, vol. 51, no. 6, p. 1075.

    Article  Google Scholar 

  20. Rehr, J.J., Kas, J.J., Vila, F.D., et al., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 5503.

    Article  Google Scholar 

  21. Rehr, J.J., Kas, J.J., Prange, M.P., et al., C. R. Phys., 2009, vol. 10, no. 6, p. 548.

    Article  ADS  Google Scholar 

  22. Rehr, J.J. and Albers, R.C., Rev. Mod. Phys., 2000, vol. 72, p. 621.

    Article  ADS  Google Scholar 

  23. Kravtsova, A.N., Lomachenko, K.A., Soldatov, A.V., et al., J. Electron Spectrosc. Relat. Phenom., 2014, vol. 195, p. 189.

    Article  Google Scholar 

  24. Polozhentsev, O.E., Bryleva, M.A., Kravtsova, A.N., Kochkina, V.K., and Soldatov, A.V., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kravtsova.

Additional information

Original Russian Text © A.N. Kravtsova, K.A. Lomachenko, S.A. Suchkova, I.A. Pankin, M.B. Fayn, A.L. Bugaev, A.V. Soldatov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 11, pp. 1612–1616.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravtsova, A.N., Lomachenko, K.A., Suchkova, S.A. et al. Doped CdTe-based quantum dots. Bull. Russ. Acad. Sci. Phys. 79, 1413–1416 (2015). https://doi.org/10.3103/S1062873815110131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815110131

Keywords

Navigation