Skip to main content
Log in

X-ray absorption spectroscopy determination of the products of manganese borohydride decomposition upon heating

  • Proceedings of the 20th National Conference on the Use of Synchrotron Radiation “SR-2014” and the National Youth Conference “Using Synchrotron Radiation”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Manganese borohydride Mn(BH4)2 powder is heated in a hydrogen atmosphere in vacuum. The long-range order in the structure is monitored in situ by means of X-ray absorption spectroscopy and X-ray diffraction; short-range order, via Mg K-edge X-ray absorption near-edge structure spectroscopy. Above 120°C, the X-ray diffraction pattern disappears and an irreversible phase transition occurs, accompanied by sample amorphization and profuse hydrogen desorption. In the hydrogen atmosphere, the phase transition occurs at a temperature of ∼110°C. The standard scheme of borohydride decomposition suggests hydrogen desorption and the formation of metallic manganese and boron. However, a theoretical analysis of X-ray absorption spectra shows that the most likely products of Mn(BH4)2 decomposition are manganese borides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orimo, S.I., Nakamori, Y., Eliseo, J.R., Zuttel, A., and Jensen, C.M., Chem. Rev., 2007, vol. 107, p. 4111.

    Article  Google Scholar 

  2. Zuttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, P., and Emmenegger, C., J. Alloys Compounds, 2003, vol. 356, p. 515.

    Article  Google Scholar 

  3. Zuttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, P., and Emmenegger, C., J. Power Sources, 2003, vol. 118, p. 1.

    Article  ADS  Google Scholar 

  4. Kou, H., Sang, G., Huang, Z., Luo, W., Chen, L., Xiao, X., Hu, C., and Zhou, Y., Int. J. Hydrogen Energy, 2014, vol. 39, p. 7050.

    Article  Google Scholar 

  5. Varin, R.A., Zbroniec, L., Polanski, M., Filinchuk, Y., and Cerny, R., Int. J. Hydrogen Energy, 2012, vol. 37, p. 16056.

    Article  Google Scholar 

  6. Liu, R.X., Reed, D., and Book, D., J. Alloys Compounds, 2012, vol. 32, p. 515.

    Google Scholar 

  7. Černý, R., Penin, N., Hagemann, H., and Filinchuk, Y., J. Phys. Chem. C, 2009, vol. 113, p. 9003.

    Article  Google Scholar 

  8. Filinchuk, Y., Richter, B., Jensen, T.R., Dmitriev, V., Chernyshov, D., and Hagemann, H., Angew. Chem. Int. Ed., 2011, vol. 50, p. 11162.

    Article  Google Scholar 

  9. Cerny, N.P.R., Hagemann, H., and Filinchuk, Y., J. Phys. Chem. C, 2009, vol. 113, p. 9003.

    Article  Google Scholar 

  10. Liu, R., Reed, D., and Book, D., J. Alloys Compounds, 2012, vol. 32, p. 515.

    Google Scholar 

  11. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D., High Pressure Res., 1996, vol. 14, p. 235.

    Article  ADS  Google Scholar 

  12. Davis, T.A., ACM Trans., Math. Softwear, 2004, vol. 30, p. 196.

    Article  MATH  Google Scholar 

  13. Davis, T.A. and Duff, I.S., ACM Trans. Math. Softwear, 1999, vol. 25, p. 1.

    Article  MATH  MathSciNet  Google Scholar 

  14. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., and Pralet, S., Parallel Comput., 2006, vol. 32, p. 136.

    Article  MathSciNet  Google Scholar 

  15. Amestoy, P., Duff, I., L’Excellent, J., and Koster, J., SIAM J. Matrix Anal. Appl., 2001, vol. 23, p. 15.

    Article  MATH  MathSciNet  Google Scholar 

  16. Shaltout, A.A., Gomma, M.M., and Ali-Bik, M.W., X-Ray Spectrometry, 2012, vol. 41, p. 355.

    Article  Google Scholar 

  17. Soloveichik, G.L., Mater. Matters, 2007, vol. 2.2, p. 11.

    Google Scholar 

  18. Choudhury, P., Bhethanabotla, V.R., and Stefanakos, E., J. Phys. Chem. C, 2009, vol. 113, p. 13416.

    Article  Google Scholar 

  19. Smolentsev, G., Soldatov, A.V., and Feiters, M.C., Phys. Rev. B, 2007, vol. 75, p. 144106.

    Article  ADS  Google Scholar 

  20. Bianconi, A, Dell Ariccia, M., Gargano, A., and Natoli, C.R., in Bond Length Determination Using XANES. EXAFS and Near Edge Structure, Bianconi, A., Incoccia, A., and Stipcich, S., Eds., Berlin: Springer, 1987, pp. 57–61.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Guda.

Additional information

Original Russian Text © A.A. Guda, I.A. Pankin, A.L. Bugaev, K.A. Lomachenko, S.A. Guda, V.P. Dmitriev, A.V. Soldatov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 1, pp. 154–159.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guda, A.A., Pankin, I.A., Bugaev, A.L. et al. X-ray absorption spectroscopy determination of the products of manganese borohydride decomposition upon heating. Bull. Russ. Acad. Sci. Phys. 79, 139–143 (2015). https://doi.org/10.3103/S1062873815010153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815010153

Keywords

Navigation