Advertisement

Plasma excitation density in a two-dimensional semiconductor superlattice

  • S. Yu. GlazovEmail author
  • I. S. Gromyshov
  • N. E. Mescheryakova
Materials of XIV All-Russian Seminar “The Wave Phenomena in Inhomogeneous Media”

Abstract

The plasma excitation density in a two-dimensional semiconductor superlattice is investigated, depending on the period and width of the potential wells that form the superlattice. The calculations are based on the quantum theory of plasma waves in the random phase approximation with regard to Umklapp processes. The superlattice parameters are estimated using the Kronig-Penney model.

Keywords

Plasma Wave Potential Barrier Height Umklapp Process Interelectron Interaction Excita Tion Energy Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glazov, S.Yu. and Kryuchkov, S.V., Fiz. Tekh. Poluprovodn., 2000, vol. 34, no. 7, p. 835.Google Scholar
  2. 2.
    Glazov, S.Yu. and Kryuchkov, S.V., Fiz. Tekh. Poluprovodn., 2001, vol. 35, no. 4, p. 456.Google Scholar
  3. 3.
    Glazov, S.Yu. and Kubrakova, E.S., Bull. Russ. Acad. Sci. Phys., 2011, vol. 75, no. 12, p. 1616.CrossRefzbMATHGoogle Scholar
  4. 4.
    Glazov, S.Yu. and Kubrakova, E.S., Bull. Russ. Acad. Sci. Phys., 2009, vol. 73, no. 12, p. 1605.CrossRefzbMATHGoogle Scholar
  5. 5.
    Glazov, S.Yu. and Kubrakova, E.S., Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki, 2010, vol. 152, book 2, p. 54.MathSciNetGoogle Scholar
  6. 6.
    Glazov, S.Yu., Kubrakova, E.S., and Meshcheryakova, N.E., Fiz. Tekh. Poluprovodn., 2013, vol. 47, no. 10, p. 1323.Google Scholar
  7. 7.
    Akhmet’yanov, R.F., Shikhovtseva, E.S., and Lomakin, G.S., Fiz. Tverd. Tela, 2009, vol. 51, no. 12, p. 2404.Google Scholar
  8. 8.
    Willatzen, M., et al., Math. Comput. Simulation, 2004, vol. 65, p. 385.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Holovatsky, V.A., Gutsul, V.I., and Makhanets, O.M., Rom. J. Phys., 2007, vol. 52, p. 327.Google Scholar
  10. 10.
    Ratnikov, P.V., Pis’ma Zh. Eksp. Teor. Fiz., 2009, vol. 90, no. 6, p. 515.Google Scholar
  11. 11.
    Adamyan, V. and Tishchenko, S., J. Phys.: Condens. Matter, 2007, vol. 19, p. 186206.ADSGoogle Scholar
  12. 12.
    Herman, M.A., Semiconductor Superlattices, Akad.-Verlag, 1986.Google Scholar
  13. 13.
    Silin, A.P., Usp. Fiz. Nauk, 1985, vol. 147, no. 3, p. 485.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Acad. Press, 1981.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • S. Yu. Glazov
    • 1
    Email author
  • I. S. Gromyshov
    • 1
  • N. E. Mescheryakova
    • 2
  1. 1.Volgograd State Social and Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd Institute of BusinessVolgogradRussia

Personalised recommendations