Advertisement

Comparative analysis of the amorphous phases obtained in Ti50Ni25Cu25 alloy using different approaches

  • A. V. ShalimovaEmail author
  • A. A. Veligzhanin
  • R. V. Sundeev
  • Ja. V. Zubavichus
  • A. M. Glezer
  • A. A. Chernyshov
Proceedings of the International Symposium “Physics of Crystals 2013”

Abstract

The structure of amorphous Ti50Ni25Cu25 alloy is investigated upon megaplastic deformation in a Bridgman chamber at room temperature. The dependences of average and local fractions of the crystalline phase along a sample’s radius on deformation are obtained. Radial distribution functions that allow calculation of the interatomic distances and coordinate numbers in several coordinate shells of investigated sample are found. It is concluded that the amorphous state in a Ti50Ni25Cu25 system fabricated by melt quenching is virtually the same as the one that arises through deformation-driven amorphization at room temperature in a Bridgman chamber.

Keywords

Amorphous State Radial Distribution Function Coordinate Shell Amorphous Halo Crystal Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nosova, G.I. Shalimova, A.V., et al., Kristallografiya, 2009, vol. 54, no. 6, pp. 1111–11183.Google Scholar
  2. 2.
    Glezer, A.M., Sundeev, R.V., and Shalimova, A.V., Dokl. Akad. Nauk, 2011, vol. 440, no. 1, pp. 39–42.Google Scholar
  3. 3.
    Prokoshkin, S.D., Khmelevskaya, I.Yu., et al., Acta Mater., 2005, vol. 53, pp. 2703–2714.CrossRefGoogle Scholar
  4. 4.
    Pushin, V.G., Kuranova, N.N., et al., Fiz. Met. Metalloved., 2012, vol. 113, no. 3, pp. 286–298.Google Scholar
  5. 5.
    Zhilyaev, A.P. and Langdon, T.G., Prog. Mater. Sci., 2008, vol. 53, pp. 893–979.CrossRefGoogle Scholar
  6. 6.
    Moroz, E.M., Usp. Khim., 2011, vol. 80, no. 4, pp. 315–332.CrossRefGoogle Scholar
  7. 7.
    Veligzhanin, A.A., Zubavichus, Ya.V., et al., Vestn. Tomsk. Gos. Univ., 2013, vol. 18, no. 3, pp. 1709–1711.Google Scholar
  8. 8.
    Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, pp. 16–22.Google Scholar
  9. 9.
    Visser, J.W., J. Appl. Crystallogr., 1975, vol. 8, pp. 1–7.CrossRefGoogle Scholar
  10. 10.
    Blank, V.D. and Estrin, E.I., Fazovye prevrashcheniya v tverdykh telakh pri vysokom davlenii (Phase Transitions in Solids under High Pressures), Moscow: Fizmatlit, 2011.Google Scholar
  11. 11.
    De Lima, J.C., Poffo, C.M., et al., Phys. B: Condens. Matter, 2013, vol. 424, pp. 60–68.ADSCrossRefGoogle Scholar
  12. 12.
    Glezer, A.M., Permyakova, I.E., et al., Mekhanicheskoe povedenie amorfnykh splavov (Mechanical Behavior of Amorphous Alloys), Novokuznetsk: Siberian State Industrial Univ., 2006.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • A. V. Shalimova
    • 1
    Email author
  • A. A. Veligzhanin
    • 2
  • R. V. Sundeev
    • 1
    • 3
  • Ja. V. Zubavichus
    • 2
  • A. M. Glezer
    • 1
    • 3
    • 4
  • A. A. Chernyshov
    • 2
  1. 1.Central Research Institute for Ferrous MetallurgyMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.Moscow State University of Instrument Engineering and Computer ScienceMoscowRussia
  4. 4.National University of Science and Technology (MISiS)MoscowRussia

Personalised recommendations