Skip to main content
Log in

Using a crystal as a universal generator of localized plastic flow autowaves

  • Proceedings of the International Symposium “Physics of Crystals 2013”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Patterns accompanying the development of a localized plastic flow in solids are considered. A correlation between products of the linear and rate parameters of elastic and plastic flows is revealed by analyzing localized plastic flows in metals and nonmetals. A relationship between the parameters of elasticity and plastic flow is hypothesized. A relationship between patterns in plastic flow and quantum-mechanical parameters is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zuev, L.B., Danilov, V.I., and Barannikova, S.A., Fizika makrolokalizatsii plasticheskogo techeniya (Physics of Plastic Flow Macrolocalizations), Novosibirsk: Nauka, 2008.

    Google Scholar 

  2. Friedel, J., Dislocations, Pergamon, 1964.

    MATH  Google Scholar 

  3. Kuhlmann-Wilsdorf, D., Dislocations in Solids, Amsterdam: Elsevier, 2002.

    Google Scholar 

  4. Cottrell, A.H., Dislocations and Plastic Flow in Crystals, Oxford Univ. Press, 1953.

    MATH  Google Scholar 

  5. Orlov, A.N., Voprosy teorii defektov v kristallakh (Theoretical Problems of Crystals Defects), Leningrad: Nauka, 1987, pp. 6–23.

    Google Scholar 

  6. Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, 1979.

    Google Scholar 

  7. Klimontovich, Yu.L., Vvedenie v fiziku otkrytykh sistem (Introduction into Open Systems Physics), Moscow: Yanus-K, 2002.

    Google Scholar 

  8. Scott, A.C., Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford: Oxford Univ. Press, 2003.

    Google Scholar 

  9. Zuev, L.B., Danilov, V.I., Barannikova, S.A., and Gorbatenko, V.V., Phys. Wave Phenom., 2009, vol. 17, p. 66.

    Article  ADS  Google Scholar 

  10. Zaiser, M. and Aifantis, E.C., Int. J. Plasticity, 2006, vol. 22, p. 1432.

    Article  MATH  Google Scholar 

  11. Vasil’ev, V.A., Romanovskii, Yu.M., and Yakhno, V.G., Avtovolnovye protsessy (Autowave Processes), Moscow: Nauka, 1987.

    Google Scholar 

  12. Korn, G.A. and Korn, T.M., Mathematical Handbook: for Scientists and Engineers, McGraw Hill, 1968.

    Google Scholar 

  13. Vladimirov, V.I., Voprosy teorii defektov v kristallakh (Theoretical Problems of Crystals Defects), Leningrad: Nauka, 1987, pp. 43–57.

    Google Scholar 

  14. Malygin, G.A., Usp. Fiz. Nauk, 1999, vol. 169, p. 979.

    Article  Google Scholar 

  15. Hill, R., Mathematical Theory of Plasticity, Oxford, 1998.

    MATH  Google Scholar 

  16. Kadomtsev, B.B., Dinamika i informatsiya (Dynamics and Information), Moscow: Red. Usp. Fiz. Nauk, 1997.

    Google Scholar 

  17. Olemskoi, A.I. and Katsnel’son, A.A., Sinergetika kondensirovannoi sredy (Sinergetics of Condensed Medium), Moscow: URSS, 2003.

    Google Scholar 

  18. Slutsker, A.I., Fiz. Tverd. Tela, 2005, vol. 47, p. 777.

    Google Scholar 

  19. Alekseev, A.A., Goryachev, S.B., and Strunin, B.M., Elementarnye protsessy plasticheskoi deformatsii kristallov (Elementary Processes of Plastic Deformation for Crystals), Kiev: Naukova dumka, 1976, pp. 52–74.

    Google Scholar 

  20. Pustovalov, V.V., Fiz. Niz. Temp., 2008, vol. 34, no. 9, p. 871.

    Google Scholar 

  21. Hudson, D., Statistika dlya fizikov (Statistics for Physicists), Moscow: Mir, 1967.

    Google Scholar 

  22. Imry, J., Introduction to Mesoscopic Physics, Oxford Univ. Press, 1997.

    Google Scholar 

  23. Zuev, L.B., Semukhin, B.S., and Zarikovskaya, N.V., Int. J. Solids Struct., 2003, vol. 40, p. 941.

    Article  Google Scholar 

  24. Murdie, G., in Matematicheskoe modelirovanie (Mathematical Simulation), Moscow: Mir, 1979, pp. 109–127.

    Google Scholar 

  25. Roitburd, A.L., Fizika deformatsionnogo uprochneniya monokristallov (Physics of Work Hardening for Monocrystals), Kiev Naukova dumka, 1972, pp. 5–22.

    Google Scholar 

  26. Zuev, L.B., Int. J. Solids Struct., 2005, vol. 42, p. 943.

    Article  Google Scholar 

  27. Zuev, L.B. and Barannikova, S.A., J. Mod. Phys., 2010, vol. 1, p. 1.

    Article  Google Scholar 

  28. Brandt, N.B. and Kul’bachinskii, V.A., Kvazichastitsy v fizike kondensirovannogo sostoyaniya (Quasi-Particles in Condensed State Physics), Moscow: Fizmatlit, 2005.

    Google Scholar 

  29. Morozov, E.M., Polak, L.S., and Fridman, Ya.B., Dokl. Akad. Nauk SSSR, 1964, vol. 146, p. 537.

    MathSciNet  Google Scholar 

  30. Umezawa, H., Matsumoto, H., and Masashi Tachiki, Thermo Field Dynamics and Condensed States, North-Holland, 1982.

    Google Scholar 

  31. Zuev, L.B. and Semukhin, B.S., Philos. Mag. A, 2002, vol. 82, p. 1183.

    Article  ADS  Google Scholar 

  32. Nikitin, E.S., Semukhin, B.S., and Zuev, L.B., Tech. Phys. Lett., 2008, vol. 34, no. 8, p. 666.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Additional information

Original Russian Text © L.B. Zuev, 2014, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2014, Vol. 78, No. 10, pp. 1206–1213.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B. Using a crystal as a universal generator of localized plastic flow autowaves. Bull. Russ. Acad. Sci. Phys. 78, 957–964 (2014). https://doi.org/10.3103/S1062873814100256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873814100256

Keywords

Navigation