SIMS investigation of the processes of gas release from zirconium-based getter alloy

  • V. A. LitvinovEmail author
  • V. T. Koppe
  • D. I. Shevchenko
  • I. I. Okseniuk
  • V. V. Bobkov
Proceedings of the 21st International Conference “Ion-Surface Interaction (ISI-2013)”


Results from a SIMS investigation of the surface of hydrogen-saturated intermetallic Zr50V50 getter alloy at various stages of gas release are presented. It is shown that a series of chemical compounds are formed at the surface between the atoms of the metallic matrix and oxygen, carbon, and hydrogen, depending on the experimental conditions. Processes of the formation and decomposition of hydroxides on the surface and in the near-surface region of the sample play a substantial role during the desorption of hydrogen in the temperature range of 300–500 K.


Metal Hydride Vana Dium Oxide Hydride Phase Thermal Desorption Spectrum Hydroxide Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sereda, I.N., Klochko, E.V., and Tseluiko, A.F., Vopr. At. Nauki Tekhn., Ser. Plazm. Elektron. Nov. Metody Uskor., 2008, no. 4, p. 155.Google Scholar
  2. 2.
    Shmal’ko, Yu.F., Klochko, Ye.V., and Lototsky, N.V., Int. J. Hydrogen Energy, 1996, vol. 21, p. 1057.CrossRefGoogle Scholar
  3. 3.
    Yartus’, V.A., Burnasheva, V.V. and Semenenko, K.N., Russ. Chem. Rev., 1983, vol. 52, no. 4, p. 299.ADSCrossRefGoogle Scholar
  4. 4.
    Solonin, S.M. and Bratanich, T.I., Sovremennye problemy fizicheskogo materialovedeniya: Sb. nauchn. tr. (Modern Problems of Physical Material Science. Collection of Scientific Papers), Kiev: National Academy of Science of Ukraine Institute of Applied Mathematics and Mechanics, 2008, issue 17, p. 175.Google Scholar
  5. 5.
    Burnasheva, V.V., Fokina, E.E., Fokin, V.N., et al., Izv. Akad. Nauk SSSR, Neorg. Mater., 1984, vol. 20, no. 5, p. 799.Google Scholar
  6. 6.
    Litvinov, V.A., Koppe, V.T., and Bobkov, V.V., Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, no. 5, p. 553.CrossRefGoogle Scholar
  7. 7.
    Loheide, F., Scholz, J., and Zuchner, H., J. Alloys Compounds, 1997, vols. 253–254, p. 463.CrossRefGoogle Scholar
  8. 8.
    Stern, A., Resnic, A., and Shaltiel, D., J. Less Common Met., 1982, vol. 88, p. 431.CrossRefGoogle Scholar
  9. 9.
    Koval’, A.G., Fizgeer, B.M., and Litvinov, V.A., Poverkhn.: Fiz., Khim., Mekh., 1982, vol. 6, p. 63.Google Scholar
  10. 10.
    Bachman, C.H. and Silbergt, P.A., J. Appl. Phys., 1958, vol. 29, p. 1266.ADSCrossRefGoogle Scholar
  11. 11.
    Vanek, V., Dixon, D.P., and Gekelman, W., J. Appl. Phys., 1979, vol. 50, p. 7237.ADSCrossRefGoogle Scholar
  12. 12.
    Podgornyi, A.N., Solovei, V.V., Shmal’ko, Yu.F., et al., Vestn. At. Nauki Tekhn., Ser. At.-Vodorodn. Energet. Tekhnol., 1987, no. 1, p. 68.Google Scholar
  13. 13.
    Galchanskaya, S.A., Dorokhov, V.V., Lazarev, N.F., et al., Vestn. At. Nauki Tekhn., Ser. Yad. Tekhn. Tekhnol., 1989, no. 1, p. 55.Google Scholar
  14. 14.
    Klochko, Ye.V., Lototsky, M.V., Popov, V.V., et al., J. Alloys Comounds, 1997, vol. 261, p. 259.CrossRefGoogle Scholar
  15. 15.
    Shmal’ko, Yu.F., Hydrogen Recycling at Plasma Facing Mat., Wu, C.H., Ed., 2000, vol. 1, p. 95.ADSCrossRefGoogle Scholar
  16. 16.
    Koval’, A.G., Bobkov, V.V., and Klimovskii, Yu.A., Dokl. Akad. Nauk Ukr. SSR, Ser. A, 1975, no. 2, p. 181.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • V. A. Litvinov
    • 1
    Email author
  • V. T. Koppe
    • 1
  • D. I. Shevchenko
    • 1
  • I. I. Okseniuk
    • 1
  • V. V. Bobkov
    • 1
  1. 1.Kharkov National UniversityKharkovUkraine

Personalised recommendations