Modeling of the effect of a dielectric film on the electrode surface upon the discharge glow-to-arc transition

  • V. I. KristyaEmail author
  • Ye Naing Tun
Proceedings of the 21st International Conference “Ion-Surface Interaction (ISI-2013)”


It is shown that when a dielectric film is on the cathode, the current density in the discharge sheath is raised due to the field emission of electrons from the cathode metal substrate under the effect of the electric field generated in the film by the surface charge that accumulates on it. This results in more intense cathode heating and faster glow-arc transitions.


Glow Discharge Dielectric Film Field Electron Emission Discharge Current Density Metal Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waymouth, J.F., Electric Discharge Lamps, MIT Press, 1971.Google Scholar
  2. 2.
    Rokhlin, G.N., Razryadnye istochniki sveta (Discharge Light Sources), Moscow: Energoatomizdat, 1991.Google Scholar
  3. 3.
    Antoshkin, N.F., Salkin, A.V., and Kharitonov, A.V., Rtutnye lampy vysokogo davleniya (Mercury Discharge Lamps of High Pressure), Saransk: Izd. Ogarev Mordovian State University, 1992.Google Scholar
  4. 4.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987.Google Scholar
  5. 5.
    Kristya, V.I. and Fisher, M.R., Bull. Russ. Acad. Sci. Phys., 2012, vol. 76, no. 5, p. 600.CrossRefGoogle Scholar
  6. 6.
    Arkhipenko, V.I., Kirillov, A.A., Safronau, Y.A., et al., Plasma Sources Sci. Technol., 2009, vol. 18, no. 4, 045013.Google Scholar
  7. 7.
    Kristya, V.I. and Supel’nyak, M.I., Poverkhn. Rentgen., Sinkhrotr. Neitron. Issled., 2011, no. 3, p. 92.Google Scholar
  8. 8.
    Yahya, A.A. and Harry, J.E., Int. J. Electron., 1999, vol. 86, no. 6, p. 755.CrossRefGoogle Scholar
  9. 9.
    Watanabe, S., Saito, S., Takahashi, K., and Onzawa, T., J. Phys. D: Appl. Phys., 2003, vol. 36, no. 20, p. 2521.ADSCrossRefGoogle Scholar
  10. 10.
    Boyle, W.S. and Haworth, F.E., Phys. Rev., 1956, vol. 101, no. 3, p. 935.ADSCrossRefGoogle Scholar
  11. 11.
    Krat’ko, S.A. and Nekrashevich, I.G., Zh. Tekh. Fiz., 1977, vol. 47, no. 4, p. 795.Google Scholar
  12. 12.
    Korolev, Yu.D. and Mesyats, G.A., Avtoemissionnye i vzryvnye protsessy v gazovom razryade (Autoemission and Explosive Processes in Gas Discharge), Novosibirsk: Nauka, 1982.Google Scholar
  13. 13.
    Myshenkov, V.I., Teplofiz. Vys. Temp., 1984, vol. 22, no. 1, p. 20.Google Scholar
  14. 14.
    Kozyrev, V.A., Korolev, Yu.D., and Mesyats, G.A., Zh. Tekh. Fiz., 1987, vol. 57, no. 1, p. 58.Google Scholar
  15. 15.
    Lenef, A., Budinger, B., and Peters, C., IEEE Trans. Plasma Sci., 2002, vol. 30, no. 1, p. 208.ADSCrossRefGoogle Scholar
  16. 16.
    Bondarenko, G.G. and Kristya, V.I., J. Phys.: Conf. Ser., 2008, vol. 100, p. 062009.ADSGoogle Scholar
  17. 17.
    Haworth, F.E., Phys. Rev., 1950, vol. 80, no. 2, p. 223.ADSCrossRefGoogle Scholar
  18. 18.
    Jenkins, J. and Jones, T.B., J. Appl. Phys., 1957, vol. 28, no. 6, p. 663.ADSCrossRefGoogle Scholar
  19. 19.
    Hancox, R., Brit. J. Appl. Phys., 1960, vol. 11, no. 10, p. 468.ADSCrossRefGoogle Scholar
  20. 20.
    Lutz, M.A., IEEE Trans. Plasma Sci., 1974, vol. 2, no. 1, p. 1.ADSCrossRefGoogle Scholar
  21. 21.
    Dobretsov, L.N. and Gomoyunova, M.V., Emissionnaya elektronika (Emission Electronics), Moscow: Nauka, 1966.Google Scholar
  22. 22.
    Luijks, G.M. and Vliet, J.A., Light. Res. Technol., 1988, vol. 20, no. 3, p. 87.CrossRefGoogle Scholar
  23. 23.
    Kristya, V.I., Bull. Russ. Acad. Sci. Phys., 2008, vol. 72, no. 7, p. 966.CrossRefGoogle Scholar
  24. 24.
    Elinson, M.I. and Vasil’ev, G.F., Avtoelektronnaya emissiya (Autoelectronic Emission), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1958.Google Scholar
  25. 25.
    Kanter, H. and Feibelman, W.A., J. Appl. Phys., 1962, vol. 33, no. 12, p. 3580.ADSCrossRefGoogle Scholar
  26. 26.
    Aitov, R.D., Korzhavyi, A.P., and Kristya, V.I., Obzory Elektron. Tekhn. Ser. 6, 1991, no. 5(1612).Google Scholar
  27. 27.
    Zykova, E.V., Kucherenko, E.T., and Aivazov, V.Ya., Radiotekh. Elektron., 1979, vol. 24, no. 7, p. 1464.Google Scholar
  28. 28.
    Kryutchenko, O.N., Mannanov, A.F., Nosov, A.A., et al., Poverkhn.: Fiz., Khim., Mekh., 1994, no. 6, p. 93.Google Scholar
  29. 29.
    Staack, D., Farouk, B., Gustol, A., et al., Plasma Sources Sci. Technol., 2008, vol. 17, no. 2, 025013.ADSCrossRefGoogle Scholar
  30. 30.
    Tablitsy fizicheskikh velichin (Tables of Physical Quantaties), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.Google Scholar
  31. 31.
    Phelps, A.V. and Petrovic-, Z.Lj., Plasma Sources Sci. Technol., 1999, vol. 8, no. 3, p. R21.ADSCrossRefGoogle Scholar
  32. 32.
    Bogaerts, A. and Gijbels, R., Plasma Sources Sci. Technol., 2002, vol. 11, no. 1, p. 27.ADSCrossRefGoogle Scholar
  33. 33.
    Byszewski, W.W., Li, Y.M., Budinger, A.B., et al., Plasma Sources Sci. Technol., 1996, vol. 5, no. 4, p. 720.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Bauman Moscow State Technical University, Kaluga BranchKalugaRussia

Personalised recommendations