Advertisement

Effects of the deep ion-induced modification of highly oriented pyrolytic graphite

  • N. N. AndrianovaEmail author
  • A. M. Borisov
  • Yu. S. Virgiliev
  • E. S. Mashkova
  • V. S. Sevostyanova
Proceedings of the 21st International Conference “Ion-Surface Interaction (ISI-2013)”
  • 27 Downloads

Abstract

The capabilities of in situ ion-electron emission monitoring of the effects of deep modification for surfaces of highly oriented pyrolytic graphite at high ion irradiation fluences and determining the threshold radiation damage level of these effects are demonstrated experimentally.

Keywords

Carbon Material Method Phys Electron Emission Cycle Heating Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schilling, W. and Ullmaier, H., Physics of radiation damage in metals, in Material Science and Technology, Cahn, R.W., Haasen, P., and Kramer, E.J., Eds., VCH Verlagesgesellschaft, 1994, ch. 9, pp. 180–241.Google Scholar
  2. 2.
    Burchell, T.D., MRS Bull., 1997, vol. 22, p. 29.Google Scholar
  3. 3.
    Borisov, A.M. and Mashkova, E.S., Nucl. Instrum. Methods Phys. Res. B, 2007, vol. 258, p. 109.ADSCrossRefGoogle Scholar
  4. 4.
    Borisov, A.M., Virgil’ev, Yu.S., and Mashkova E.S., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2008, vol. 2, no. 1, pp. 52–67.Google Scholar
  5. 5.
    Amirkhanov, I.V., Didyk, A.Yu., Murzafarov, D.Z., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2008, no. 5, p. 3.Google Scholar
  6. 6.
    Liu, J., Yao, H.J., Sun, Y.M., et al., Nucl. Instrum. Methods Phys. Res. B, 2006, vol. 245, p. 126.ADSCrossRefGoogle Scholar
  7. 7.
    Aumayr, F., El-Said, A.S., and Meissl, W., Nucl. Instrum. Methods Phys. Res. B, 2008, vol. 266, p. 2729.ADSCrossRefGoogle Scholar
  8. 8.
    Meguro, T., Yamaguchi, Y., Fukagawa, H., et al., Nucl. Instrum. Methods Phys. Res. B, 2005, vol. 235, p. 431.ADSCrossRefGoogle Scholar
  9. 9.
    Niwase, K., Phys. Rev. B, 1995, vol. 52, p. 15785.ADSCrossRefGoogle Scholar
  10. 10.
    Virgil’ev, Yu.S., Neorg. Mater., 1994, vol. 30, p. 903.Google Scholar
  11. 11.
    Takahiro, K., Zhang, K., Rotter, F., et al., Nucl. Instrum. Methods Phys. Res. B, 2007, vol. 256, p. 378.ADSCrossRefGoogle Scholar
  12. 12.
    Andrianova, N.N., Avilkina, V.S., Borisov, A.M., et al., Nucl. Instrum. Methods Phys. Res. B, 2012, vol. 273, p. 58.ADSCrossRefGoogle Scholar
  13. 13.
    Andrianova, N.N., Borisov, A.M., Mashkova, E.S., et al., Nucl. Instrum. Methods Phys. Res. B, 2013, vol. 315, p. 117.ADSCrossRefGoogle Scholar
  14. 14.
    Avilkina, V.S., Andrianova, N.N., Borisov, A.M., et al., Nucl. Instrum. Methods Phys. Res. B, 2011, vol. 269, p. 995.ADSCrossRefGoogle Scholar
  15. 15.
    Andrianova, N.N., Avilkina, V.S., Borisov, A.M., et al., Vacuum, 2012, vol. 86, p. 1630.ADSCrossRefGoogle Scholar
  16. 16.
    Avilkina, V.S., Andrianova, N.N., Borisov, A.M., et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2011, vol. 5, no. 2, pp. 221–224.CrossRefGoogle Scholar
  17. 17.
    Andrianova, N.N., Borisov, A.M., Mashkova, E.S., et al., Vacuum, 2010, vol. 84, p. 1033.CrossRefGoogle Scholar
  18. 18.
    Andrianova, N.N. and Borisov, A.M. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2008, vol. 2, no. 2, pp. 189–192.CrossRefGoogle Scholar
  19. 19.
    Soder, B., Roth, J., and Moller, W., Phys. Rev. B, 1988, vol. 37, p. 815.ADSCrossRefGoogle Scholar
  20. 20.
    Andrianova, N.N., Borisov, A.M., Mashkova, E.S., et al., Nucl. Instrum. Methods Phys. Res. B, 2009, vol. 267, p. 2761.ADSCrossRefGoogle Scholar
  21. 21.
    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Interlayer Compounds and Composites on Their Base), Moscow: Aspekt Press, 1997 [in Russian].Google Scholar
  22. 22.
    Katosonov, A.S., Fiz. Tverd. Tela, 1989, vol. 31, no. 8, p. 146.Google Scholar
  23. 23.
    Cernusca, S., Fursatz, M., Winter, H.P., and Aumayr, F., Europhys. Lett., 2005, vol. 70, p. 768.ADSCrossRefGoogle Scholar
  24. 24.
    Parilis, E.S., Kishinevsky, L.M., Turaev, N.Yu., et al., Atomic Collisions on Solid Surfaces, Amsterdam: North-Holland, 1993.Google Scholar
  25. 25.
    Kaminski, M., Atomic and Ionic Impact Phenomena on Metal Surfaces, Berlin: Springer, 1965.CrossRefGoogle Scholar
  26. 26.
    Friendland, E., Le Roux, H., and Malherbe, J.B., Rad. Eff. Lett., 1986, vol. 87, p. 281.CrossRefGoogle Scholar
  27. 27.
    Friendland, E. and Fletcher, M., Nucl. Instrum. Methods Phys. Res. B, 1992, vol. 64, p. 242.ADSCrossRefGoogle Scholar
  28. 28.
    Titov, A.I., Karaseov, P.A., Belyakov, V.S., et al., Vacuum, 2012, vol. 86, p. 1638.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • N. N. Andrianova
    • 1
    Email author
  • A. M. Borisov
    • 1
  • Yu. S. Virgiliev
    • 2
  • E. S. Mashkova
    • 1
  • V. S. Sevostyanova
    • 1
  1. 1.Skobel’tsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.OAO NIIgrafitMoscowRussia

Personalised recommendations